Home > Blogs > VMware VROOM! Blog > Tag Archives: vSphere 6.7

Tag Archives: vSphere 6.7

vSphere 6.7 Update 3 Supports AMD EPYC™ Generation 2 Processors, VMmark Showcases Its Leadership Performance

Two leadership VMmark benchmark results have been published with AMD EPYC™ Generation 2 processors running VMware vSphere 6.7 Update 3 on a two-node two-socket cluster and a four-node cluster. VMware worked closely with AMD to enable support for AMD EPYC™ Generation 2 in the VMware vSphere 6.7 U3 release.

The VMmark benchmark is a free tool used by hardware vendors and others to measure the performance, scalability, and power consumption of virtualization platforms and has become the standard by which the performance of virtualization platforms is evaluated.

The new AMD EPYC™ Generation 2 performance results can be found here and here.

View all VMmark results
Learn more about VMmark
These benchmark result claims are valid as of the date of writing.

New Scheduler Option for vSphere 6.7 U2

Along with the recent release of VMware vSphere 6.7 U2, we published a new whitepaper that shows the performance of a new scheduler option that was included in the 6.7 U2 update.  We referred to this new scheduler option internally as the “sibling” scheduler, but the official name is the side-channel aware scheduler version 2, or SCAv2.  The whitepaper includes full details about SCAv1 and SCAv2, the L1TF security vulnerability that made them necessary, and the performance implications with several different workload types.  This blog is a brief overview of the key points, but we recommend that you check out the full document.

In August of 2018, a security vulnerability known as L1TF, affecting systems using Intel processors, was revealed, and patches and remediations were also made available. Intel provided micro-code updates for its processors, operating system patches were made available, and VMware provided an update for vSphere. The full details of the vCenter and ESXi patches are in a VMware security advisory that links to individual KB articles.

Continue reading

First VMmark 3.1 Publications, Featuring New Cascade Lake Processors

VMmark is a free tool used by hardware vendors and others to measure the performance, scalability, and power consumption of virtualization platforms.  If you’re unfamiliar with VMmark 3.x, each tile is a grouping of 19 virtual machines (VMs) simultaneously running diverse workloads commonly found in today’s data centers, including a scalable Web simulation, an E-commerce simulation (with backend database VMs), and standby/idle VMs.

As Joshua mentioned in a recent blog post, we released VMmark 3.1 in February, adding support for persistent memory, improving workload scalability, and better reflecting secure customer environments by increasing side-channel vulnerability mitigation requirements.

I’m happy to announce that today we published the first VMmark 3.1 results.  These results were obtained on systems meeting our industry-leading side-channel-aware mitigation requirements, thus continuing the benchmark’s ability to provide an indication of real-world performance.

Continue reading

DRS Enhancements in vSphere 6.7

A new paper describes the DRS enhancements in vSphere 6.7, which include new initial placement, host maintenance mode enhancements, DRS support for non-volatile memory (NVM), and enhanced resource pool reservations.

Resource pool and VM entitlements—old and new models

A summary of the improvements follows:

  • DRS in vSphere 6.7 can now take advantage of the much faster placement and more accurate recommendations for all DRS configurations. vSphere 6.5 did not include support for some configurations like VMs that had fault tolerance (FT) enabled, among others.
  • Starting with vSphere 6.7, DRS uses the new initial placement algorithm to come up with the recommended list of hosts to be placed in maintenance mode. Further, when evacuating the hosts, DRS uses the new initial placement algorithm to find new destination hosts for outgoing VMs.
  • DRS in vSphere 6.7 can handle VMs running on next generation persistent memory devices, also known as Non-Volatile Memory (NVM) devices.
  • There is a new two-pass algorithm that allocates a resource pool’s resource reservation
    to its children (also known as divvying).

For more information about all of these updates, see DRS Enhancements in vSphere 6.7.

vSphere with iSER – How to release the full potential of your iSCSI storage!

By Mark Ma

With the release of vSphere 6.7, VMware added iSER (iSCSI Extensions for RDMA) as a native supported storage protocol to ESXi. With iSER run over iSCSI, users can boost their vSphere performance just by replacing the regular NICs with RDMA-capable NICs. RDMA (Remote Direct Memory Access) allows the transfer of memory from one computer to another. This is a direct transfer and minimizes CPU/kernel involvement. By bypassing the kernel, we get extremely high I/O bandwidth and low latency. (To use RDMA, you must have an HCA/Host Channel Adapter device on both the source and destination.) In this blog, we compare standard iSCSI performance vs. iSER performance to see how iSER can release the full potential of your iSCSI storage.

Continue reading

New white paper: Big Data performance on VMware Cloud on AWS: Spark machine learning and IoT analytics performance on-premises and in the cloud

By Dave Jaffe

A new white paper is available comparing Spark machine learning performance on an 8-server on-premises cluster vs. a similarly configured VMware Cloud on AWS cluster.

Here is what the VMware Cloud on AWS cluster looked like:

Screenshot of cluster configuration

VMware Cloud on AWS configuration for performance tests

Three standard analytic programs from the Spark machine learning library (MLlib), K-means clustering, Logistic Regression classification, and Random Forest decision trees, were driven using spark-perf. In addition, a new, VMware-developed benchmark, IoT Analytics Benchmark, which models real-time machine learning on Internet-of-Things data streams, was used in the comparison. The benchmark is available from GitHub.

Continue reading

Persistent Memory Performance in vSphere 6.7

We published a paper that shows how VMware is helping advance PMEM technology by driving the virtualization enhancements in vSphere 6.7. The paper gives a detailed performance analysis of using PMEM technology on vSphere using various workloads and scenarios.

These are the key points that we cover in this white paper:

  • We explain how PMEM can be configured and used in a vSphere environment.
  • We show how applications with different characteristics can take advantage of PMEM in vSphere. Below are some of the use-cases:
    • How PMEM device limits can be achieved under vSphere with little to no overhead of virtualization. We show virtual-to-native ratio along with raw bandwidth and latency numbers from fio, an I/O microbenchmark.
    • How traditional relational databases like Oracle can benefit from using PMEM in vSphere.
    • How scaling-out VMs in vSphere can benefit from PMEM. We used Sysbench with MySQL to show such benefits.
    • How modifying applications (PMEM-aware) can get the best performance out of PMEM. We show performance data from such applications, e.g., an OLTP database like SQL Server and an in-memory database like Redis.
    • Using vMotion to migrate VMs with PMEM which is a host-local device just like NVMe SSDs. We also characterize in detail, vMotion performance of VMs with PMEM.
  • We outline some best practices on how to get the most out of PMEM in vSphere.

Read the full paper here.

Performance Best Practices Guide for vSphere 6.7

We are pleased to announce the availability of Performance Best Practices for VMware vSphere 6.7. This is a comprehensive book designed to help system administrators obtain the best performance from their vSphere 6.7 deployments.

The book covers new features as well as updating and expanding on many of the topics covered in previous versions.

These include:

  • Hardware-assisted virtualization
  • Storage hardware considerations
  • Network hardware considerations
  • Memory page sharing
  • Getting the best performance with iSCSI and NFS storage
  • Getting the best performance from NVMe drives
  • vSphere virtual machine encryption recommendations
  • Running storage latency-sensitive workloads
  • Network I/O Control (NetIOC)
  • DirectPath I/O
  • Running network latency-sensitive workloads
  • Microsoft Virtualization-Based Security (VBS)
  • CPU Hot Add
  • 4KB native drives
  • Selecting virtual network adapters
  • The vSphere HTML5 Client
  • vSphere web client configuration
  • Pair-wise balancing in DRS-enabled clusters
  • VMware vSphere update manager
  • VMware vSAN performance

The book can be found here.

Also, for a summary of the new performance-related features in vSphere 6.7, refer to What’s New in Performance.

vCenter performance improvements from vSphere 6.5 to 6.7: What does 2x mean?

In a recent blog, the VMware vSphere team shared the following performance improvements in vSphere 6.7 vs. 6.5:

Moreover, with vSphere 6.7 vCSA delivers phenomenal performance improvements (all metrics compared at cluster scale limits, versus vSphere 6.5):
2X faster performance in vCenter operations per second
3X reduction in memory usage
3X faster DRS-related operations (e.g. power-on virtual machine)

As senior engineers within the VMware Performance and vSphere teams, we are writing this blog to provide more details regarding these numbers and to explain how we measured them. We also briefly explain some of the technical details behind these improvements.

Continue reading