Home > Blogs > VMware VROOM! Blog > Tag Archives: vsphere

Tag Archives: vsphere

Introducing DRS DumpInsight

In an effort to provide a more insightful user experience and to help understand how vSphere DRS works, we recently released a fling: DRS Dump Insight.

DRS Dump Insight is a service portal where users can upload drmdump files and it provides a summary of the DRS run, with a breakup of all the possible moves along with the changes in ESX hosts resource consumption before and after DRS run.

Users can get answers to questions like:

  • Why did DRS make a certain recommendation?
  • Why is DRS not making any recommendations to balance my cluster?
  • What recommendations did DRS drop due to cost/benefit analysis?
  • Can I get all the recommendations made by DRS?

Continue reading

DRS Lens – A new UI dashboard for DRS

DRS Lens provides an alternative UI for a DRS enabled cluster. It gives a simple, yet powerful interface to monitor the cluster real time and provide useful analyses to the users. The UI is comprised of different dashboards in the form of tabs for each cluster being monitored.

Continue reading

Oracle Database Performance on vSphere 6.5 Monster Virtual Machines

We have just published a new whitepaper on the performance of Oracle databases on vSphere 6.5 monster virtual machines. We took a look at the performance of the largest virtual machines possible on the previous four generations of four-socket Intel-based servers. The results show how performance of these large virtual machines continues to scale with the increases and improvements in server hardware.

Oracle Database Monster VM Performance across 4 generations of Intel based servers on vSphere 6.5

Oracle Database Monster VM Performance on vSphere 6.5 across 4 generations of Intel-based  four-socket servers

In addition to vSphere 6.5 and the four-socket Intel-based servers used in the testing, an IBM FlashSystem A9000 high performance all flash array was used. This array provided extreme low latency performance that enabled the database virtual machines to perform at the achieved high levels of performance.

Please read the full paper, Oracle Monster Virtual Machine Performance on VMware vSphere 6.5, for details on hardware, software, test setup, results, and more cool graphs.  The paper also covers performance gain from Hyper-Threading, performance effect of NUMA, and best practices for Oracle monster virtual machines. These best practices are focused on monster virtual machines, and it is recommended to also check out the full Oracle Databases on VMware Best Practices Guide.

Some similar tests with Microsoft SQL Server monster virtual machines were also recently completed on vSphere 6.5 by my colleague David Morse. Please see his blog post  and whitepaper for the full details.

This work on Oracle is in some ways a follow up to Project Capstone from 2015 and the resulting whitepaper Peeking at the Future with Giant Monster Virtual Machines . That project dealt with monster VM performance from a slightly different angle and might be interesting to those who are also interested in this paper and its results.

 

SQL Server VM Performance with VMware vSphere 6.5

Achieving optimal SQL Server performance on vSphere has been a constant focus here at VMware; I’ve published past performance studies with vSphere 5.5 and 6.0 which showed excellent performance up to the maximum VM size supported at the time.

Since then, there have been quite a few changes!  While this study uses a similar test methodology, it features an updated hypervisor (vSphere 6.5), database engine (SQL Server 2016), OLTP benchmark (DVD Store 3), and CPUs (Intel Xeon v4 processors with 24 cores per socket, codenamed Broadwell-EX).

Continue reading

Machine Learning on vSphere 6 with Nvidia GPUs – Episode 2

by Hari Sivaraman, Uday Kurkure, and Lan Vu

In a previous blog [1], we looked at how machine learning workloads (MNIST and CIFAR-10) using TensorFlow running in vSphere 6 VMs in an NVIDIA GRID configuration reduced the training time from hours to minutes when compared to the same system running no virtual GPUs.

Here, we extend our study to multiple workloads—3D CAD and machine learning—run at the same time vs. run independently on a same vSphere server.

Continue reading

Understanding vSphere DRS Performance – A White Paper

VMware vSphere Distributed Resource Scheduler (DRS) is responsible for placement of Virtual Machines and balancing of resources in a cluster. The key driver for DRS is VM/Application happiness, and it achieves this by effective VM placement and efficient load balancing. We have a new white paper, which tries to explain how DRS works in basic scenarios and how it can be tuned to behave differently for specific scenarios.

The white paper talks about the factors that influence DRS decisions and provides some useful insights into different parameters that can be tuned in specific scenarios to make DRS more effective. It also explains how to monitor DRS to better understand its behavior.

It covers DRS behavior in specific scenarios with some case studies. Some of these studies are around

  •  VM Consumed vs. Active Memory – How it impacts DRS behavior.
  •  Impact of VM overrides on cluster balance.
  •  Prerequisite moves during initial placement.
  •  Using shares to prioritize cluster resources.

The paper provides knowledge about the factors that affect DRS behavior and helps understand how DRS does what it does. This knowledge, along with monitoring and troubleshooting tips, including real case studies, will help tune DRS clusters for optimum performance.

Machine Learning on VMware vSphere 6 with NVIDIA GPUs

by Uday Kurkure, Lan Vu, and Hari Sivaraman

Machine learning is an exciting area of technology that allows computers to behave without being explicitly programmed, that is, in the way a person might learn. This tech is increasingly applied in many areas like health science, finance, and intelligent systems, among others.

In recent years, the emergence of deep learning and the enhancement of accelerators like GPUs has brought the tremendous adoption of machine learning applications in a broader and deeper aspect of our lives. Some application areas include facial recognition in images, medical diagnosis in MRIs, robotics, automobile safety, and text and speech recognition.

Machine learning workloads have also become a critical part in cloud computing. For cloud environments based on vSphere, you can even deploy a machine learning workload yourself using GPUs via the VMware DirectPath I/O or vGPU technology.

GPUs reduce the time it takes for a machine learning or deep learning algorithm to learn (known as the training time) from hours to minutes. In a series of blogs, we will present the performance results of running machine learning benchmarks on VMware vSphere using NVIDIA GPUs.

Episode 1: Performance Results of Machine Learning with DirectPath I/O and NVIDIA GPUs

In this episode, we present the performance results of running machine learning benchmarks on VMware vSphere with NVIDIA GPUs in DirectPath I/O mode and on GRID virtual GPU (vGPU) mode.

Continue reading

DRS Doctor is here to diagnose your DRS clusters

Mystery revealed, DRS for VMware vSphere is no more a black box! DRS Doctor will tell you all you need to know about your DRS clusters.

Our latest fling, DRS Doctor, will monitor your DRS clusters for virtual machine and host resource usage data, DRS-recommended migrations, and the reason behind each migration. It also monitors all the cluster-related events, tasks, and cluster balance, and logs all this information into a plain text log file that anyone can read.

Read this blog for more information on how DRS Doctor can monitor and diagnose your clusters.

Download DRS Doctor from our flings site.

Tutorial Session on Performance Debugging on VMware vSphere

Ever wondered what it takes to debug performance issues on a VMware stack? How do you figure out if the performance issue is in your virtual machine, or the network layer, or the storage layer, or the hypervisor layer?

Here’s a handy tutorial that showcases a systematic approach for troubleshooting performance using tools like Esxtop, vSCSI stats and Net stats on a VMware stack. The tutorial also talks about some very useful optimizations and performance best practices.

Thanks to Ramprasad K. S. for putting together the slides based on his vast experience dealing with customer issues. Thanks also to Ramprasad and Sai Inabattini for presenting this at the CMG India 2nd Annual conference in Bangalore in November 2015, which was received very well.

Fault Tolerance Performance in vSphere 6

VMware has published a technical white paper about vSphere 6 Fault Tolerance architecture and performance. The paper describes which types of applications work best in virtual machines with vSphere FT enabled.

VMware vSphere Fault Tolerance (FT) provides continuous availability to virtual machines that require a high amount of uptime. If the virtual machine fails, another virtual machine is ready to take over the job.  vSphere achieves FT by maintaining primary and secondary virtual machines using a new technology named Fast Checkpointing. This technology is similar to Storage vMotion, which copies the virtual machine state (storage, memory, and networking) to the secondary ESXi host. Fast Checkpointing keeps the primary and secondary virtual machines in sync.

Continue reading