Home > Blogs > VMware VROOM! Blog > Tag Archives: vsphere

Tag Archives: vsphere

vSphere 6.7 Update 3 Supports AMD EPYC™ Generation 2 Processors, VMmark Showcases Its Leadership Performance

Two leadership VMmark benchmark results have been published with AMD EPYC™ Generation 2 processors running VMware vSphere 6.7 Update 3 on a two-node two-socket cluster and a four-node cluster. VMware worked closely with AMD to enable support for AMD EPYC™ Generation 2 in the VMware vSphere 6.7 U3 release.

The VMmark benchmark is a free tool used by hardware vendors and others to measure the performance, scalability, and power consumption of virtualization platforms and has become the standard by which the performance of virtualization platforms is evaluated.

The new AMD EPYC™ Generation 2 performance results can be found here and here.

View all VMmark results
Learn more about VMmark
These benchmark result claims are valid as of the date of writing.

Introducing VMmark ML

VMmark has been the go-to virtualization benchmark for over 12 years. It’s been used by partners, customers, and internally in a wide variety of technical applications. VMmark1, released in 2007, was the de-facto virtualization consolidation benchmark in a time when the overhead and feasibility of virtualization was still largely in question. In 2010, as server consolidation became less of an “if” and more of a “when,” VMmark2 introduced more of the rich vSphere feature set by incorporating infrastructure workloads (VMotion, Storage VMotion, and Clone & Deploy) alongside complex application workloads like DVD Store. Fast forward to 2017, and we released VMmark3, which builds on the previous versions by integrating an easy automation deployment service alongside complex multi-tier modern application workloads like Weathervane. To date, across all generations, we’ve had nearly 300 VMmark result publications (297 at the time of this writing) and countless internal performance studies.

Unsurprisingly, tech industry environments have continued to evolve, and so must the benchmarks we use to measure them. It’s in this vein that the VMware VMmark performance team has begun experimenting with other use cases that don’t quite fit the “traditional” VMmark benchmark. One example of a non-traditional use is Machine Learning and its execution within Kubernetes clusters. At the time of this writing, nearly 9% of the VMworld 2019 US sessions are about ML and Kubernetes. As such, we thought this might be a good time to provide an early teaser to VMmark ML and even point you at a couple of other performance-centric Machine Learning opportunities at VMworld 2019 US.

Although it’s very early in the VMmark ML development cycle, we understand that there’s a need for push-button-easy, vSphere-based Machine Learning performance analysis. As an added bonus, our prototype runs within Kubernetes, which we believe to be well-suited for this type of performance analysis.

Our internal-only VMmark ML prototype is currently streamlined to efficiently perform a limited number of operations very well as we work with partners, customers, and internal teams on how VMmark ML should be exercised. It is able to:

  1. Rapidly deploy Kubernetes within a vSphere environment.
  2. Deploy a variety of containerized ML workloads within our newly created VMmark ML Kubernetes cluster.
  3. Execute these ML workloads either in isolation or concurrently to determine the performance impact of architectural, hardware, and software design decisions.

VMmark ML development is still very fluid right now, but we decided to test some of these concepts/assumptions in a “real-world” situation. I’m fortunate to work alongside long-time DVD Store author and Big Data guru Dave Jaffe on VMmark ML.  As he and Sr. Technical Marketing Architect Justin Murray were preparing for their VMworld US talk, “High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning [BCA1563BU]“, we thought this would be a good opportunity to experiment with VMmark ML. Dave was able to use the VMmark ML prototype to deploy a 4-node Kubernetes cluster onto a single vSphere host with a 2nd-Generation Intel® Xeon® Scalable processor (“Cascade Lake”) CPU. VMmark ML then pulled a previously stored Docker container with several MLperf workloads contained within it. Finally, as a concurrent execution exercise, these workloads were run simultaneously, pushing the CPU utilization of the server above 80%. Additionally, Dave is speaking about vSphere Deep Learning performance in his talk “Optimize Virtualized Deep Learning Performance with New Intel Architectures [MLA1594BU],“ where he and Intel Principal Engineer Padma Apparao explore the benefits of Vector Neural Network Instructions (VNNI). I definitely recommend either of these talks if you want a deep dive into the details of VNNI or Spark analysis.

Another great opportunity to learn about VMware Performance team efforts within the Machine Learning space is to attend the Hands-on-Lab Expert Lead Workshop, “Launch Your Machine Learning Workloads in Minutes on VMware vSphere [ELW-2048-01-EMT_U],” or take the accompanying lab. This is being led by another VMmark ML team member Uday Kurkure along with Staff Global Solutions Consultant Kenyon Hensler. (Sign up for the Expert Lead using the VMworld 2019 mobile application or on my.vmworld.com.)

Our goal after VMworld 2019 US is to continue discussions with partners, customers, and internal teams about how a benchmark like VMmark ML would be most useful. We also hope to complete our integration of Spark within Kubernetes on vSphere and reproduce some of the performance analysis done to date. Stay tuned to the performance blog for additional posts and details as they become available.

Writing Performant Tagging Code: Tips and Tricks for PowerCLI

vSphere 5.1 introduced an inventory tagging feature that has been available in all later versions of vSphere, including vSphere 6.7. Tags let datacenter administrators organize different vSphere objects like datastores, virtual machines, hosts, and so on. This makes it easier to sort and search for objects that share a tag, among other things. For example, you might use tags to track a group of VMs that all have the same operating system.

Writing code to use tags can be challenging in large-scale environments: a straightforward use of VMware PowerCLI cmdlets may result in poor performance, and while direct Tagging Service APIs are faster, the documentation can be difficult to understand. In this blog, we show some practical examples of using PowerCLI and Tagging Service APIs to perform tag-related operations. We include some simple measurements to show the performance improvements when using the Tagging Service vs. cmdlets. The sample performance numbers are for illustrative purposes only. We describe the test setup in the Appendix.

1. Connecting to PowerCLI and the Tagging Service

In this document, when we write “PowerCLI cmdlets,” we mean calls like Get-Tag, or Get-TagCategory. To access this API, simply open a PowerShell terminal and log in:

Connect-VIServer <vCenter server IP or FQDN> -User <username> -Pass <password>

Continue reading

First VMmark 3.1 Publications, Featuring New Cascade Lake Processors

VMmark is a free tool used by hardware vendors and others to measure the performance, scalability, and power consumption of virtualization platforms.  If you’re unfamiliar with VMmark 3.x, each tile is a grouping of 19 virtual machines (VMs) simultaneously running diverse workloads commonly found in today’s data centers, including a scalable Web simulation, an E-commerce simulation (with backend database VMs), and standby/idle VMs.

As Joshua mentioned in a recent blog post, we released VMmark 3.1 in February, adding support for persistent memory, improving workload scalability, and better reflecting secure customer environments by increasing side-channel vulnerability mitigation requirements.

I’m happy to announce that today we published the first VMmark 3.1 results.  These results were obtained on systems meeting our industry-leading side-channel-aware mitigation requirements, thus continuing the benchmark’s ability to provide an indication of real-world performance.

Continue reading

Performance Best Practices Guide for vSphere 6.7

We are pleased to announce the availability of Performance Best Practices for VMware vSphere 6.7. This is a comprehensive book designed to help system administrators obtain the best performance from their vSphere 6.7 deployments.

The book covers new features as well as updating and expanding on many of the topics covered in previous versions.

These include:

  • Hardware-assisted virtualization
  • Storage hardware considerations
  • Network hardware considerations
  • Memory page sharing
  • Getting the best performance with iSCSI and NFS storage
  • Getting the best performance from NVMe drives
  • vSphere virtual machine encryption recommendations
  • Running storage latency-sensitive workloads
  • Network I/O Control (NetIOC)
  • DirectPath I/O
  • Running network latency-sensitive workloads
  • Microsoft Virtualization-Based Security (VBS)
  • CPU Hot Add
  • 4KB native drives
  • Selecting virtual network adapters
  • The vSphere HTML5 Client
  • vSphere web client configuration
  • Pair-wise balancing in DRS-enabled clusters
  • VMware vSphere update manager
  • VMware vSAN performance

The book can be found here.

Also, for a summary of the new performance-related features in vSphere 6.7, refer to What’s New in Performance.

Oracle Database Performance with VMware Cloud on AWS

You’ve probably already heard about VMware Cloud on Amazon Web Services (VMC on AWS). It’s the same vSphere platform that has been running business critical applications for years, but now it’s available on Amazon’s cloud infrastructure. Following up on the many tests that we have done with Oracle databases on vSphere, I was able to get some time on a VMC on AWS setup to see how Oracle databases perform in this new environment.

It is important to note that VMC on AWS is vSphere running on bare metal servers in Amazon’s infrastructure. The expectation is that performance will be very similar to “regular” onsite vSphere, with the added advantage that the hardware provisioning, software installation, and configuration is already done and the environment is ready to go when you login. The vCenter interface is the same, except that it references the Amazon instance type for the server.

Continue reading

SQL Server Performance of VMware Cloud on AWS

In the past, I’ve always benchmarked performance of SQL Server VMs on vSphere with “on-premises” infrastructure.  Given the skyrocketing interest in the cloud, I was very excited to get my hands on VMware Cloud on AWS – just in time for Amazon’s AWS Summit!

A key question our customers have is: how well do applications (like SQL Server) perform in our cloud?  Well, I’m happy to report that the answer is great!

Continue reading

ESX IP Storage Troubleshooting Best Practice White Paper

We have published an ESX IP Storage Troubleshooting Best Practice white paper in which we recommend vSphere customers deploying ESX IP storage over 10G networks to include 10G packet capture systems as a best practice to ensure network visibility.

The white paper explores the challenges and alternatives for packet capture in a vSphere environment with IP storage (NFS, iSCSI) datastores over a 10G network, and explains why traditional techniques for capturing packet traces on 1G networks will suffer from severe limitations (capture drops and inaccurate timestamps) when used for 10G networks. Although commercial 10G packet capture systems are commonly available, they may be beyond the budget of some vSphere customers. We present the design of a self-assembled 10G packet capture solution that can be built using commercial components relatively inexpensively. The self-assembled solution is optimized for common troubleshooting scenarios where short duration packet captures can satisfy most analysis requirements.

Our experience troubleshooting a large number of IP storage issues has shown that the ability to capture and analyze packet traces in an ESX IP storage environment can significantly reduce the mean time to resolution for serious functional and performance issues. When reporting an IP storage problem to VMware or to a storage array vendor, an accompanying packet trace file is a great piece of evidence that can significantly reduce the time required by the responsible engineering teams to identify the problem.

Performance of SQL Server 2017 for Linux VMs on vSphere 6.5

Microsoft SQL Server has long been one of the most popular applications for running on vSphere virtual machines.  Last year there was quite a bit of excitement when Microsoft announced they were bringing SQL Server to Linux.  Over the last year Microsoft has had quite a bit of interest in SQL Server for Linux and it was announced at Microsoft Ignite last month that it is now officially launched and generally available.

VMware and Microsoft have collaborated to validate and support the functionality and performance scalability of SQL Server 2017 on vSphere-based Linux VMs.  The results of that work show SQL Server 2017 for Linux installs easily and has great performance within VMware vSphere virtual machines. VMware vSphere is a great environment to be able to try out the new Linux version of SQL Server and be able to also get great performance.

Continue reading

Skylake Update – Oracle Database Performance on vSphere 6.5 Monster Virtual Machines

We were able to get one of the new four-socket Intel Skylake based servers and run some more tests. Specifically we used the Xeon Platinum 8180 processors with 28 cores each. The new data has been added to the Oracle Monster Virtual Machine Performance on VMware vSphere 6.5 whitepaper. Please check out the paper for the full details and context of these updates.

The generational testing in the paper now includes a fifth generation with a 112 vCPU virtual machine running on the Skylake based server. Performance gain from the initial 40 vCPU VM on Westmere-EX to the Skylake based 112 vCPU VM is almost 4x.

Continue reading