Home > Blogs > VMware VROOM! Blog > Tag Archives: vmware

Tag Archives: vmware

Persistent Memory Performance in vSphere 6.7

We published a paper that shows how VMware is helping advance PMEM technology by driving the virtualization enhancements in vSphere 6.7. The paper gives a detailed performance analysis of using PMEM technology on vSphere using various workloads and scenarios.

These are the key points that we cover in this white paper:

  • We explain how PMEM can be configured and used in a vSphere environment.
  • We show how applications with different characteristics can take advantage of PMEM in vSphere. Below are some of the use-cases:
    • How PMEM device limits can be achieved under vSphere with little to no overhead of virtualization. We show virtual-to-native ratio along with raw bandwidth and latency numbers from fio, an I/O microbenchmark.
    • How traditional relational databases like Oracle can benefit from using PMEM in vSphere.
    • How scaling-out VMs in vSphere can benefit from PMEM. We used Sysbench with MySQL to show such benefits.
    • How modifying applications (PMEM-aware) can get the best performance out of PMEM. We show performance data from such applications, e.g., an OLTP database like SQL Server and an in-memory database like Redis.
    • Using vMotion to migrate VMs with PMEM which is a host-local device just like NVMe SSDs. We also characterize in detail, vMotion performance of VMs with PMEM.
  • We outline some best practices on how to get the most out of PMEM in vSphere.

Read the full paper here.

Performance Best Practices Guide for vSphere 6.7

We are pleased to announce the availability of Performance Best Practices for VMware vSphere 6.7. This is a comprehensive book designed to help system administrators obtain the best performance from their vSphere 6.7 deployments.

The book covers new features as well as updating and expanding on many of the topics covered in previous versions.

These include:

  • Hardware-assisted virtualization
  • Storage hardware considerations
  • Network hardware considerations
  • Memory page sharing
  • Getting the best performance with iSCSI and NFS storage
  • Getting the best performance from NVMe drives
  • vSphere virtual machine encryption recommendations
  • Running storage latency-sensitive workloads
  • Network I/O Control (NetIOC)
  • DirectPath I/O
  • Running network latency-sensitive workloads
  • Microsoft Virtualization-Based Security (VBS)
  • CPU Hot Add
  • 4KB native drives
  • Selecting virtual network adapters
  • The vSphere HTML5 Client
  • vSphere web client configuration
  • Pair-wise balancing in DRS-enabled clusters
  • VMware vSphere update manager
  • VMware vSAN performance

The book can be found here.

Also, for a summary of the new performance-related features in vSphere 6.7, refer to What’s New in Performance.

Oracle Database Performance with VMware Cloud on AWS

You’ve probably already heard about VMware Cloud on Amazon Web Services (VMC on AWS). It’s the same vSphere platform that has been running business critical applications for years, but now it’s available on Amazon’s cloud infrastructure. Following up on the many tests that we have done with Oracle databases on vSphere, I was able to get some time on a VMC on AWS setup to see how Oracle databases perform in this new environment.

It is important to note that VMC on AWS is vSphere running on bare metal servers in Amazon’s infrastructure. The expectation is that performance will be very similar to “regular” onsite vSphere, with the added advantage that the hardware provisioning, software installation, and configuration is already done and the environment is ready to go when you login. The vCenter interface is the same, except that it references the Amazon instance type for the server.

Our VMC on AWS instance is made up of four ESXi hosts. Each host has two 18-core Intel Xeon E5-2686 v4 (aka Broadwell) processors and 512 GB of RAM. In total, the cluster has 144 cores and 2 TB of RAM, which gives us lots of physical resources to utilize in the cloud.

In our test, the database VMs were running Red Hat Enterprise Linux 7.2 with Oracle 12c. To drive a load against the database VMs, a single 18 vCPU driver VM was running Windows Server 2012 R2, and the DVD Store 3 test workload was also setup on the cluster. A 100 GB test DS3 database was created on each of the Oracle database VMs. During testing, the number of threads driving load against the databases were increased until maximum throughput was achieved, which was around 95% CPU utilization. The total throughput across all database servers for each test is shown below.

 

In this test, the DB VMs were configured with 16 vCPUs and 128 GB of RAM. In the 8 VMs test case, a total of 128 vCPUs were allocated across the 144 cores of the cluster. Additionally the cluster was also running the 18 vCPU driver VM,  vCenter, vSAN, and NSX. This makes the 12 VM test case interesting, where there were 192 vCPUs for the DB VMs, plus 18 vCPUs for the driver. The hyperthreads clearly help out, allowing for performance to continue to scale, even though there are more vCPUs allocated than physical cores.

The performance itself represents scaling very similar to what we have seen with Oracle and other database workloads with vSphere in recent releases. The cluster was able to achieve over 370 thousand orders per minute with good scaling from 1 VM to 12 VMs. We also recently published similar tests with SQL Server on the same VMC on AWS cluster, but with a different workload and more, smaller VMs.

UPDATE (07/30/2018): The whitepaper detailing these results is now available here.

Addressing Meltdown/Spectre in VMmark

The recently described Meltdown/Spectre vulnerabilities have implications throughout the tech industry, and the VMmark virtualization benchmark is no exception. In deciding how to approach the issue, the VMmark team’s goal was to address the impact of the these vulnerabilities while maintaining the value and integrity of the benchmark.

Applying the full set of currently available Meltdown/Spectre mitigations is likely to have a significant impact on VMmark scores. Because the mitigations are expected to continue evolving for some time, that impact might even change. If the VMmark team were to require the full set of mitigations in order for a submission to be compliant, that might make new submissions non-competitive with older ones, and also introduce more “noise” into VMmark scores as the mitigations evolve. While our intention for the future is that eventually all new VMmark results will be obtained on virtualization platforms that have the full set of Meltdown/Spectre mitigations, we have chosen to take a gradual approach.

Beginning May 8, 2018, all newly-published VMmark results must comply with a number of new requirements related to the Meltdown and Spectre vulnerabilities. These requirements are detailed in Appendix C of the latest edition of the VMmark User’s Guide.

Before performing any VMmark benchmark runs intended for publication, check the VMmark download page to make sure you’re using the latest edition of the VMmark User’s Guide.  If you have questions, you can reach the VMmark team at vmmark-info@vmware.com.

Performance of SQL Server 2017 for Linux VMs on vSphere 6.5

Microsoft SQL Server has long been one of the most popular applications for running on vSphere virtual machines.  Last year there was quite a bit of excitement when Microsoft announced they were bringing SQL Server to Linux.  Over the last year Microsoft has had quite a bit of interest in SQL Server for Linux and it was announced at Microsoft Ignite last month that it is now officially launched and generally available.

VMware and Microsoft have collaborated to validate and support the functionality and performance scalability of SQL Server 2017 on vSphere-based Linux VMs.  The results of that work show SQL Server 2017 for Linux installs easily and has great performance within VMware vSphere virtual machines. VMware vSphere is a great environment to be able to try out the new Linux version of SQL Server and be able to also get great performance.

Using CDB, a cloud database benchmark developed by the Microsoft SQL Server team, we were able to verify that the performance of SQL Server for Linux in a vSphere virtual machine was similar to other non-virtualized and virtualized operating systems or platforms.

Our initial reference test size was relatively small, so we wanted to try out testing larger sizes to see how well SQL Server 2017 for Linux performed as the VM size was scaled up.  For the test, we used a four socket Intel Xeon E7-8890 v4 (Broadwell)-based server with 96 cores (24 cores per socket).  The initial test began with a 24 virtual CPU VM to match the number of physical cores of a single socket.  Additional tests were run by increasing the size of the VM by 24 vCPUs for each test until, in the final test, the VM had 96 total vCPUs.  We configured the virtual machine with 512 GB of RAM and separate log and data disks on an SSD-based Fibre Channel SAN.  We used the same best practices for SQL Server for Linux as what we normally use for the windows version as documented in our published best practices guide for SQL Server on vSphere.

The results showed that SQL Server 2017 for Linux scaled very well as the additional vCPUs were added to the virtual machine. SQL Server 2017 for Linux is capable of scaling up to handle very large databases on VMware vSphere 6.5 Linux virtual machines.

Skylake Update – Oracle Database Performance on vSphere 6.5 Monster Virtual Machines

We were able to get one of the new four-socket Intel Skylake based servers and run some more tests. Specifically we used the Xeon Platinum 8180 processors with 28 cores each. The new data has been added to the Oracle Monster Virtual Machine Performance on VMware vSphere 6.5 whitepaper. Please check out the paper for the full details and context of these updates.

The generational testing in the paper now includes a fifth generation with a 112 vCPU virtual machine running on the Skylake based server. Performance gain from the initial 40 vCPU VM on Westmere-EX to the Skylake based 112 vCPU VM is almost 4x.

The performance gained from Hyper-Threading was also updated and shows a 27% performance gain from the use of Hyper-Threads. The test was conducted by running two 112 vCPU VMs at the same time so that all 224 logical threads are active. The total throughput from the two VMs is then compared with the throughput from a single VM.

My colleague David Morse has also updated his SQL Server monster virtual machine whitepaper with Skylake data as well.

Updated – SQL Server VM Performance with vSphere 6.5, October 2017

Back in March, I published a performance study of SQL Server performance with vSphere 6.5 across multiple processor generations.  Since then, Intel has released a brand-new processor architecture: the Xeon Scalable platform, formerly known as Skylake.

Our team was fortunate enough to get early access to a server with these new processors inside – just in time for generating data that we presented to customers at VMworld 2017.

Each Xeon Platinum 8180 processor has 28 physical cores (pCores), and with four processors in the server, there was a whopping 112 pCores on one physical host!  As you can see, that extra horsepower provides nice database server performance scaling:

Generational SQL Server VM Database Performance

Generational SQL Server VM Database Performance

For more details and the test results, take a look at the updated paper:
Performance Characterization of Microsoft SQL Server on VMware vSphere 6.5

New White Paper: Fast Virtualized Hadoop and Spark on All-Flash Disks – Best Practices for Optimizing Virtualized Big Data Applications on VMware vSphere 6.5

A new white paper is available showing how to best deploy and configure vSphere 6.5 for Big Data applications such as Hadoop and Spark running on a cluster with fast processors, large memory, and all-flash storage (Non-Volatile Memory Express storage and solid state disks). Hardware, software, and vSphere configuration parameters are documented, as well as tuning parameters for the operating system, Hadoop, and Spark.

The best practices were tested on a 13-server cluster, with Hadoop installed on vSphere as well as on bare metal. Workloads for both Hadoop (TeraSort and TestDFSIO) and Spark Machine Learning Library routines (K-means clustering, Logistic Regression classification, and Random Forest decision trees) were run on the cluster. Configurations with 1, 2, and 4 VMs per host were tested as well as bare metal. Among the 4 virtualized configurations, 4 VMs per host ran fastest due to the best utilization of storage as well as the highest percentage of data transfer within a server. The 4 VMs per host configuration also ran faster than bare metal on all Hadoop and Spark tests but one.

Continue reading

DRS Lens – A new UI dashboard for DRS

DRS Lens provides an alternative UI for a DRS enabled cluster. It gives a simple, yet powerful interface to monitor the cluster real time and provide useful analyses to the users. The UI is comprised of different dashboards in the form of tabs for each cluster being monitored.

Continue reading

Oracle Database Performance on vSphere 6.5 Monster Virtual Machines

We have just published a new whitepaper on the performance of Oracle databases on vSphere 6.5 monster virtual machines. We took a look at the performance of the largest virtual machines possible on the previous four generations of four-socket Intel-based servers. The results show how performance of these large virtual machines continues to scale with the increases and improvements in server hardware.

Oracle Database Monster VM Performance across 4 generations of Intel based servers on vSphere 6.5

Oracle Database Monster VM Performance on vSphere 6.5 across 4 generations of Intel-based  four-socket servers

In addition to vSphere 6.5 and the four-socket Intel-based servers used in the testing, an IBM FlashSystem A9000 high performance all flash array was used. This array provided extreme low latency performance that enabled the database virtual machines to perform at the achieved high levels of performance.

Please read the full paper, Oracle Monster Virtual Machine Performance on VMware vSphere 6.5, for details on hardware, software, test setup, results, and more cool graphs.  The paper also covers performance gain from Hyper-Threading, performance effect of NUMA, and best practices for Oracle monster virtual machines. These best practices are focused on monster virtual machines, and it is recommended to also check out the full Oracle Databases on VMware Best Practices Guide.

Some similar tests with Microsoft SQL Server monster virtual machines were also recently completed on vSphere 6.5 by my colleague David Morse. Please see his blog post  and whitepaper for the full details.

This work on Oracle is in some ways a follow up to Project Capstone from 2015 and the resulting whitepaper Peeking at the Future with Giant Monster Virtual Machines . That project dealt with monster VM performance from a slightly different angle and might be interesting to those who are also interested in this paper and its results.