Home > Blogs > VMware VROOM! Blog > Tag Archives: vmware

Tag Archives: vmware

New White Paper: Fast Virtualized Hadoop and Spark on All-Flash Disks – Best Practices for Optimizing Virtualized Big Data Applications on VMware vSphere 6.5

A new white paper is available showing how to best deploy and configure vSphere 6.5 for Big Data applications such as Hadoop and Spark running on a cluster with fast processors, large memory, and all-flash storage (Non-Volatile Memory Express storage and solid state disks). Hardware, software, and vSphere configuration parameters are documented, as well as tuning parameters for the operating system, Hadoop, and Spark.

The best practices were tested on a 13-server cluster, with Hadoop installed on vSphere as well as on bare metal. Workloads for both Hadoop (TeraSort and TestDFSIO) and Spark Machine Learning Library routines (K-means clustering, Logistic Regression classification, and Random Forest decision trees) were run on the cluster. Configurations with 1, 2, and 4 VMs per host were tested as well as bare metal. Among the 4 virtualized configurations, 4 VMs per host ran fastest due to the best utilization of storage as well as the highest percentage of data transfer within a server. The 4 VMs per host configuration also ran faster than bare metal on all Hadoop and Spark tests but one.

Continue reading

DRS Lens – A new UI dashboard for DRS

DRS Lens provides an alternative UI for a DRS enabled cluster. It gives a simple, yet powerful interface to monitor the cluster real time and provide useful analyses to the users. The UI is comprised of different dashboards in the form of tabs for each cluster being monitored.

Continue reading

Oracle Database Performance on vSphere 6.5 Monster Virtual Machines

We have just published a new whitepaper on the performance of Oracle databases on vSphere 6.5 monster virtual machines. We took a look at the performance of the largest virtual machines possible on the previous four generations of four-socket Intel-based servers. The results show how performance of these large virtual machines continues to scale with the increases and improvements in server hardware.

Oracle Database Monster VM Performance across 4 generations of Intel based servers on vSphere 6.5

Oracle Database Monster VM Performance on vSphere 6.5 across 4 generations of Intel-based  four-socket servers

In addition to vSphere 6.5 and the four-socket Intel-based servers used in the testing, an IBM FlashSystem A9000 high performance all flash array was used. This array provided extreme low latency performance that enabled the database virtual machines to perform at the achieved high levels of performance.

Please read the full paper, Oracle Monster Virtual Machine Performance on VMware vSphere 6.5, for details on hardware, software, test setup, results, and more cool graphs.  The paper also covers performance gain from Hyper-Threading, performance effect of NUMA, and best practices for Oracle monster virtual machines. These best practices are focused on monster virtual machines, and it is recommended to also check out the full Oracle Databases on VMware Best Practices Guide.

Some similar tests with Microsoft SQL Server monster virtual machines were also recently completed on vSphere 6.5 by my colleague David Morse. Please see his blog post  and whitepaper for the full details.

This work on Oracle is in some ways a follow up to Project Capstone from 2015 and the resulting whitepaper Peeking at the Future with Giant Monster Virtual Machines . That project dealt with monster VM performance from a slightly different angle and might be interesting to those who are also interested in this paper and its results.

 

SQL Server VM Performance with VMware vSphere 6.5

Achieving optimal SQL Server performance on vSphere has been a constant focus here at VMware; I’ve published past performance studies with vSphere 5.5 and 6.0 which showed excellent performance up to the maximum VM size supported at the time.

Since then, there have been quite a few changes!  While this study uses a similar test methodology, it features an updated hypervisor (vSphere 6.5), database engine (SQL Server 2016), OLTP benchmark (DVD Store 3), and CPUs (Intel Xeon v4 processors with 24 cores per socket, codenamed Broadwell-EX).

Continue reading

Machine Learning on vSphere 6 with Nvidia GPUs – Episode 2

by Hari Sivaraman, Uday Kurkure, and Lan Vu

In a previous blog [1], we looked at how machine learning workloads (MNIST and CIFAR-10) using TensorFlow running in vSphere 6 VMs in an NVIDIA GRID configuration reduced the training time from hours to minutes when compared to the same system running no virtual GPUs.

Here, we extend our study to multiple workloads—3D CAD and machine learning—run at the same time vs. run independently on a same vSphere server.

Continue reading

Machine Learning on VMware vSphere 6 with NVIDIA GPUs

by Uday Kurkure, Lan Vu, and Hari Sivaraman

Machine learning is an exciting area of technology that allows computers to behave without being explicitly programmed, that is, in the way a person might learn. This tech is increasingly applied in many areas like health science, finance, and intelligent systems, among others.

In recent years, the emergence of deep learning and the enhancement of accelerators like GPUs has brought the tremendous adoption of machine learning applications in a broader and deeper aspect of our lives. Some application areas include facial recognition in images, medical diagnosis in MRIs, robotics, automobile safety, and text and speech recognition.

Machine learning workloads have also become a critical part in cloud computing. For cloud environments based on vSphere, you can even deploy a machine learning workload yourself using GPUs via the VMware DirectPath I/O or vGPU technology.

GPUs reduce the time it takes for a machine learning or deep learning algorithm to learn (known as the training time) from hours to minutes. In a series of blogs, we will present the performance results of running machine learning benchmarks on VMware vSphere using NVIDIA GPUs.

Episode 1: Performance Results of Machine Learning with DirectPath I/O and NVIDIA GPUs

In this episode, we present the performance results of running machine learning benchmarks on VMware vSphere with NVIDIA GPUs in DirectPath I/O mode and on GRID virtual GPU (vGPU) mode.

Continue reading

Virtual SAN 6.2 Performance with OLTP and VDI Workloads

Virtual SAN is a VMware storage solution that is tightly integrated with vSphere—making storage setup and maintenance in a vSphere virtualized environment fast and flexible. Virtual SAN 6.2 adds several features and improvements, including additional data integrity with software checksum, space efficiency features of RAID-5 and RAID-6, deduplication and compression, and an in-memory client read cache.

We ran several tests to compare the performance of Virtual SAN 6.1 and 6.2 to make sure they were on par with each other.

Continue reading

Peeking At The Future with Giant Monster Virtual Machines

Remember that cool project with VMware, HP Enterprise, and IBM where four super huge monster virtual machines (VMs) of 120 vCPUs each were all running at the same time on a single server with great performance?

That was Project Capstone, and it was presented at VMworld San Francisco and VMworld Barcelona last fall as a spotlight session.  The follow-up whitepaper is now completed and published,  which means that there are lots of great technical details available with testing results and analysis.

In addition to the four 120 vCPU VMs test, additional configurations were also run with eight 60 vCPU VMs and sixteen 30 vCPU VMs.  This shows that plenty of large VMs can be run on a single host with excellent performance when using a solution that supports tons of CPU capacity and cutting edge flash storage.

The whitepaper not only contains all of the test results from the original presentation, but also includes additional details around the performance of CPU Affinity vs PreferHT and under-provisioning.  There is also a best practices section that if focused on running monster VMs.

Fault Tolerance Performance in vSphere 6

VMware has published a technical white paper about vSphere 6 Fault Tolerance architecture and performance. The paper describes which types of applications work best in virtual machines with vSphere FT enabled.

VMware vSphere Fault Tolerance (FT) provides continuous availability to virtual machines that require a high amount of uptime. If the virtual machine fails, another virtual machine is ready to take over the job.  vSphere achieves FT by maintaining primary and secondary virtual machines using a new technology named Fast Checkpointing. This technology is similar to Storage vMotion, which copies the virtual machine state (storage, memory, and networking) to the secondary ESXi host. Fast Checkpointing keeps the primary and secondary virtual machines in sync.

Continue reading

Scaling Performance for VAIO in vSphere 6.0 U1

by Chien-Chia Chen

vSphere APIs for I/O Filtering (VAIO) is a framework that enables third-party software developers to implement data services, such as caching and replication, to vSphere. Figure 1 below shows the general architecture of VAIO. Once I/O filter libraries are installed to a virtual disk (VMDK), every I/O request generated from the guest operating system to the VMDK will first be intercepted by the VAIO framework at the file device layer. The VAIO framework then hands over the I/O request to the user space I/O filter libraries, where a series of third party data service operations can be performed against the I/O. After processing the I/O, user space I/O filter libraries return the I/O back to the VAIO framework, which continues the rest of the issuing path. Similarly, upon completion, the I/O will first be processed by the user space I/O filter libraries before continuing its original completion path.

There have been questions around the overhead of the VAIO framework due to its extra user-to-kernel communication. In this blog post, we evaluate the performance of vSphere APIs for I/O Filtering using a null I/O filter and demonstrate how VAIO scales with respect to the number of virtual machines and outstanding I/Os (OIOs). The null I/O filter accepts each I/O request and immediately returns it.

Continue reading