Home > Blogs > VMware VROOM! Blog > Tag Archives: Spark

Tag Archives: Spark

New White Paper: Fast Virtualized Hadoop and Spark on All-Flash Disks – Best Practices for Optimizing Virtualized Big Data Applications on VMware vSphere 6.5

A new white paper is available showing how to best deploy and configure vSphere 6.5 for Big Data applications such as Hadoop and Spark running on a cluster with fast processors, large memory, and all-flash storage (Non-Volatile Memory Express storage and solid state disks). Hardware, software, and vSphere configuration parameters are documented, as well as tuning parameters for the operating system, Hadoop, and Spark.

The best practices were tested on a 13-server cluster, with Hadoop installed on vSphere as well as on bare metal. Workloads for both Hadoop (TeraSort and TestDFSIO) and Spark Machine Learning Library routines (K-means clustering, Logistic Regression classification, and Random Forest decision trees) were run on the cluster. Configurations with 1, 2, and 4 VMs per host were tested as well as bare metal. Among the 4 virtualized configurations, 4 VMs per host ran fastest due to the best utilization of storage as well as the highest percentage of data transfer within a server. The 4 VMs per host configuration also ran faster than bare metal on all Hadoop and Spark tests but one.

Continue reading

Introducing TPCx-HS Version 2 – An Industry Standard Benchmark for Apache Spark and Hadoop clusters deployed on premise or in the cloud

Since its release on August 2014, the TPCx-HS Hadoop benchmark has helped drive competition in the Big Data marketplace, generating 23 publications spanning 5 Hadoop distributions, 3 hardware vendors, 2 OS distributions and 1 virtualization platform. By all measures, it has proven to be a successful industry standard benchmark for Hadoop systems. However, the Big Data landscape has rapidly changed over the last 30 months. Key technologies have matured while new ones have risen to prominence in an effort to keep pace with the exponential expansion of datasets. One such technology is Apache Spark.

spark-logo-trademarkAccording to a Big Data survey published by the Taneja Group, more than half of the respondents reported actively using Spark, with a notable increase in usage over the 12 months following the survey. Clearly, Spark is an important component of any Big Data pipeline today. Interestingly, but not surprisingly, there is also a significant trend towards deploying Spark in the cloud. What is driving this adoption of Spark? Predominantly, performance.

Today, with the widespread adoption of Spark and its integration into many commercial Big Data platform offerings, I believe there needs to be a straightforward, industry standard way in which Spark performance and price/performance could be objectively measured and verified. Just like TPCx-HS Version 1 for Hadoop, the workload needs to be well understood and the metrics easily relatable to the end user.

Continuing on the Transaction Processing Performance Council’s commitment to bringing relevant benchmarks to the industry, it is my pleasure to announce TPCx-HS Version 2 for Spark and Hadoop. In keeping with important industry trends, not only does TPCx-HS support traditional on premise deployments, but also cloud.

I envision that TPCx-HS will continue to be a useful benchmark standard for customers as they evaluate Big Data deployments in terms of performance and price/performance, and for vendors in demonstrating the competitiveness of their products.

 

Tariq Magdon-Ismail

(Chair, TPCx-HS Benchmark Committee)

 

Additional Information:  TPC Press Release

New White Paper: Best Practices for Optimizing Big Data Performance on vSphere 6

A new white paper is available showing how to best deploy and configure vSphere for Big Data applications such as Hadoop and Spark. Hardware, software, and vSphere configuration parameters are documented, as well as tuning parameters for the operating system, Hadoop, and Spark.

The best practices were tested on a Dell 12-server cluster, with Hadoop installed on vSphere as well as on bare metal. Workloads for both Hadoop (TeraSort and TestDFSIO) and Spark (Support Vector Machines and Logistic Regression) were run on the cluster. The virtualized cluster outperformed the bare metal cluster by 5-10% for all MapReduce and Spark workloads with the exception of one Spark workload, which ran at parity. All workloads showed excellent scaling from 5 to 10 worker servers and from smaller to larger dataset sizes.

Continue reading