Home > Blogs > VMware VROOM! Blog > Tag Archives: DVD Store

Tag Archives: DVD Store

Oracle Database Performance on vSphere 6.5 Monster Virtual Machines

We have just published a new whitepaper on the performance of Oracle databases on vSphere 6.5 monster virtual machines. We took a look at the performance of the largest virtual machines possible on the previous four generations of four-socket Intel-based servers. The results show how performance of these large virtual machines continues to scale with the increases and improvements in server hardware.

Oracle Database Monster VM Performance across 4 generations of Intel based servers on vSphere 6.5

Oracle Database Monster VM Performance on vSphere 6.5 across 4 generations of Intel-based  four-socket servers

In addition to vSphere 6.5 and the four-socket Intel-based servers used in the testing, an IBM FlashSystem A9000 high performance all flash array was used. This array provided extreme low latency performance that enabled the database virtual machines to perform at the achieved high levels of performance.

Please read the full paper, Oracle Monster Virtual Machine Performance on VMware vSphere 6.5, for details on hardware, software, test setup, results, and more cool graphs.  The paper also covers performance gain from Hyper-Threading, performance effect of NUMA, and best practices for Oracle monster virtual machines. These best practices are focused on monster virtual machines, and it is recommended to also check out the full Oracle Databases on VMware Best Practices Guide.

Some similar tests with Microsoft SQL Server monster virtual machines were also recently completed on vSphere 6.5 by my colleague David Morse. Please see his blog post  and whitepaper for the full details.

This work on Oracle is in some ways a follow up to Project Capstone from 2015 and the resulting whitepaper Peeking at the Future with Giant Monster Virtual Machines . That project dealt with monster VM performance from a slightly different angle and might be interesting to those who are also interested in this paper and its results.

 

SQL Server VM Performance with VMware vSphere 6.5

Achieving optimal SQL Server performance on vSphere has been a constant focus here at VMware; I’ve published past performance studies with vSphere 5.5 and 6.0 which showed excellent performance up to the maximum VM size supported at the time.

Since then, there have been quite a few changes!  While this study uses a similar test methodology, it features an updated hypervisor (vSphere 6.5), database engine (SQL Server 2016), OLTP benchmark (DVD Store 3), and CPUs (Intel Xeon v4 processors with 24 cores per socket, codenamed Broadwell-EX).

Continue reading

VMware vCloud Air Database Performance Scalability with SQL Server

Previous posts have shown vSphere can easily handle running Microsoft SQL Server on four-socket servers with large numbers of cores—with vSphere 5.5 on Westmere-EX and more recently with vSphere 6 on Ivy Bridge-EX.  We recently ran similar tests on vCloud Air to measure how these enterprise databases with mission critical performance requirements perform in a cloud environment. The tests show that SQL Server databases scale very well on vCloud Air with a variety of virtual machine (VM) counts and virtual CPU (vCPU) sizes.

The benchmark tests were run with vCloud Air using their Virtual Private Cloud (VPC) subscription-based service.  This is a very compelling hybrid cloud service that allows for an on-premises vSphere infrastructure to be expanded into the public cloud in a secure and scalable way. The underlying host hardware consisted of two 8-core CPUs for a total of 16 physical cores, which meant that the maximum number of vCPUs was 16 (although additional processors were available via Hyper-Threading, they were not utilized).

Continue reading

SQL Server VM Performance on VMware vSphere 6

Last October, I blogged about SQL Server performance with vSphere 5.5 using a four-socket Intel Xeon processor E7 based host.  Now that vSphere 6 is available, I’ve run an updated set of tests using this new release, on an even more powerful host, with Xeon E7 v2 processors.  A variety of virtual CPU (vCPU) and virtual machine (VM) quantities were tested to show that vSphere can handle hundreds of thousands of online transaction processing (OLTP) database operations per minute.

DVD Store 2.1, an open-source OLTP database stress tool, was the workload used to stress the VMs.  The first experiment in the paper was a generational performance comparison between the old and new setups; as you can see, there is a dramatic increase in throughput, even though the size of each VM has doubled from 8 vCPUs per VM to 16:

Generational performance improvement from old study to new study

There are also tests using CPU affinity to show the performance differences between physical cores and logical processors (Hyper-Threads), the benefit of “right-sizing” virtual machines, and measuring the impact of the advanced Latency Sensitivity setting. 

For more details and the test results, please download the whitepaper: Performance Characterization of Microsoft SQL Server on VMware vSphere 6.

Monster Performance with SQL Server VMs on vSphere 5.5

VMware vSphere provides an ideal platform for customers to virtualize their business-critical applications, including databases, ERP systems, email servers, and even newly emerging technologies such as Hadoop.  I’ve been focusing on the first one (databases), specifically Microsoft SQL Server, one of the most widely deployed database platforms in the world.  Many organizations have dozens or even hundreds of instances deployed in their environments. Consolidating these deployments onto modern multi-socket, multi-core, multi-threaded server hardware is an increasingly attractive proposition for IT administrators.

Achieving optimal SQL Server performance has been a continual focus for VMware; with current vSphere 5.x releases, VMware supports much larger “monster” virtual machines that can scale up to 64 virtual CPUs and 1 TB of RAM, including exposing virtual NUMA architecture to the guest. In fact, the main goal of this blog and accompanying whitepaper is to refresh a 2009 study that demonstrated SQL performance on vSphere 4, given the marked technology advancements on both the software and hardware fronts.

These tests show that large SQL Server 2012 databases run extremely efficiently with VMware, achieving great performance in a variety of virtual machine configurations with only minor tunings to SQL Server and the vSphere ESXi host. These tunings and other best practices for fully optimizing large virtual machines for SQL Server databases are presented in the paper.

One test in the paper shows the maximum host throughput achieved with different numbers of virtual CPUs per VM. This was measured starting with 8 vCPUs per VM, then doubled to 16, then 32, and finally 64 (the maximum supported with vSphere 5.5).  DVD Store, which is a popular database tool and a key workload of the VMmark benchmark, was used to stress the VMs.  Here is a graph from the paper showing the 8 vCPU x 8 VMs case, which achieved an aggregate of 493,804 opm (operations per minute) on the host:

8 x 8 vCPU VM throughput

There are also tests using CPU affinity to show the performance differences between physical cores and logical processors (Hyper-Threads), the impact of various virtual NUMA (vNUMA) topologies, and experiments with the Latency Sensitivity advanced setting.

For more details and the test results, please download the whitepaper: Performance and Scalability of Microsoft SQL Server on VMware vSphere 5.5.