Home > Blogs > VMware VROOM! Blog > Tag Archives: deep learning

Tag Archives: deep learning

New White Paper: High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning

By Dave Jaffe, VMware Performance Engineering

A new white paper is available showing the advantages of running virtualized Spark Deep Learning workloads on Kubernetes.

Recent versions of Spark include support for Kubernetes. For Spark on Kubernetes, the Kubernetes scheduler provides the cluster manager capability provided by Yet Another Resource Negotiator (YARN) in typical Spark on Hadoop clusters. Upon receiving a spark-submit command to start an application, Kubernetes instantiates the requested number of Spark executor pods, each with one or more Spark executors.

The benefits of running Spark on Kubernetes are many: ease of deployment, resource sharing, simplifying the coordination between developer and cluster administrator, and enhanced security. A standalone Spark cluster on vSphere virtual machines running in the same configuration as a Kubernetes-managed Spark cluster on vSphere virtual machines were compared for performance using a heavy workload, and the difference imposed by Kubernetes was found to be insignificant.

Spark applications running in Standalone mode require that every Spark worker node be installed with the correct version of Spark, Python, Java, etc. This puts a burden on the IT administrator, who may be managing many Spark applications with different requirements, and it requires coordination between the administrator and the application developer. With Kubernetes, the developer only needs to create a container with the correct software, and the IT administrator just needs to manage the cluster using the fine-grained resource management tools to enable the different Spark workloads.

To compare Spark Standalone performance to Spark on Kubernetes performance, a Deep Learning workload, the Maximum Throughput Spark BigDL ResNet50 image classifier from VMware IoT Analytics Benchmark, was run on the same 16 worker nodes, first while configured as Spark worker nodes, then while configured as Kubernetes nodes. Then the number of nodes was reduced by four (by removing the four workers on host 4), and the same comparison was made using 12 nodes, then 8, then 4.

The relative results are shown below. The Spark Standalone and Spark on Kubernetes performance in terms of images per second classified was within ~1% of each other for all configurations. Performance scaled well for the Spark tests as the number of VMs increased from 4 (1 server) to 16 (4 servers).

All details are in the paper.

IoT Analytics Benchmark adds neural network–based deep learning with Keras and BigDL

The IoT Analytics Benchmark released last year dealt with an important Internet of Things use case—monitoring factory sensor data for impending failure conditions. This year, we are tackling an equally important use case—image classification. Whether used in facial recognition, license plate readers, inspection systems, or autonomous vehicles, neural network–based deep learning is making image detection and classification a viable technology.

As in the classic machine learning used in the original IoT Analytics Benchmark code (which used the Spark Machine Learning Library), the new deep learning code first trains a model using pre-labeled images and then deploys that model to infer the classification of new images. For IoT this inference step is the most important. Thus, the new programs, designated as IoT Analytics Benchmark DL, use previously trained models (included in the kit) to demonstrate inferencing that can be performed at the edge (on small gateway systems) or in scaled-out Spark clusters.

Continue reading

Sharing GPU for Machine Learning/Deep Learning on VMware vSphere with NVIDIA GRID: Why is it needed? And How to share GPU?

By Lan Vu, Uday Kurkure, and Hari Sivaraman 

Data scientists may use GPUs on vSphere that are dedicated to use by one virtual machine only for their modeling work, if they need to. Certain heavier machine learning workloads may well require that dedicated approach. However, there are also many ML workloads and user types that do not use a dedicated GPU continuously to its maximum capacity. This presents an opportunity for shared use of a physical GPU by more than one virtual machine/user. This article explores the performance of a shared-GPU setup like this, supported by the NVIDIA GRID product on vSphere, and presents performance test results that show that sharing is a feasible approach. The other technical reasons for sharing a GPU among multiple VMs are also described here. The article also gives best practices for determining how the sharing of a GPU may be done.

VMware vSphere supports NVIDIA GRID technology for multiple types of workloads. This technology virtualizes GPUs via a mediated passthrough mechanism. Initially, NVIDIA GRID supported GPU virtualization for graphics workloads only. But, since the introduction of Pascal GPU, NVIDIA GRID has supported GPU virtualization for both graphics and CUDA/machine learning workloads. With this support, multiple VMs running GPU-accelerated workloads like machine learning/deep learning (ML/DL) based on TensorFlow, Keras, Caffe, Theano, Torch, and others can share a single GPU by using a vGPU provided by GRID. This brings benefits in multiple use cases that we discuss on this post.  

Continue reading

VMware’s AI-based Performance Tool Can Improve Itself Automatically

PerfPsychic  our AI-based performance analyzing tool, enhances its accuracy rate from 21% to 91% with more data and training when debugging vSAN performance issues. What is better, PerfPsychic can continuously improve itself and the tuning procedure is automated. Let’s examine how we achieve this in the following sections.

How to Improve AI Model Accuracy

Three elements have huge impacts on the training results for deep learning models: amount of high-quality training data, reasonably configured hyperparameters that are used to control the training process, and sufficient but acceptable training time. In the following examples, we use the same training and testing dataset as we presented in our previous blog.

Continue reading

VMware Speedily Resolves Customer Issues in vSAN Performance Using AI

We in VMware’s Performance team create and maintain various tools to help troubleshoot customer issues—of these, there is a new one that allows us to more quickly determine storage problems from vast log data using artificial intelligence. What used to take us days, now takes seconds. PerfPsychic analyzes storage system performance and finds performance bottlenecks using deep learning algorithms.

Let’s examine the benefit artificial intelligence (AI) models in PerfPsychic bring when we troubleshoot vSAN performance issues. It takes our trained AI module less than 1 second to analyze a vSAN log and to pinpoint performance bottlenecks at an accuracy rate of more than 91%. In contrast, when analyzed manually, an SR ticket on vSAN takes a seasoned performance engineer about one week to deescalate, while the durations range from 3 days to 14 days. Moreover, AI also wins over traditional analyzing algorithms by enhancing the accuracy rate from around 80% to more than 90%.

Continue reading

Machine Learning on VMware vSphere 6 with NVIDIA GPUs

by Uday Kurkure, Lan Vu, and Hari Sivaraman

Machine learning is an exciting area of technology that allows computers to behave without being explicitly programmed, that is, in the way a person might learn. This tech is increasingly applied in many areas like health science, finance, and intelligent systems, among others.

In recent years, the emergence of deep learning and the enhancement of accelerators like GPUs has brought the tremendous adoption of machine learning applications in a broader and deeper aspect of our lives. Some application areas include facial recognition in images, medical diagnosis in MRIs, robotics, automobile safety, and text and speech recognition.

Machine learning workloads have also become a critical part in cloud computing. For cloud environments based on vSphere, you can even deploy a machine learning workload yourself using GPUs via the VMware DirectPath I/O or vGPU technology.

GPUs reduce the time it takes for a machine learning or deep learning algorithm to learn (known as the training time) from hours to minutes. In a series of blogs, we will present the performance results of running machine learning benchmarks on VMware vSphere using NVIDIA GPUs.

This is episode 1. Also see:

Episode 1: Performance Results of Machine Learning with DirectPath I/O and NVIDIA GPUs

In this episode, we present the performance results of running machine learning benchmarks on VMware vSphere with NVIDIA GPUs in DirectPath I/O mode and on GRID virtual GPU (vGPU) mode.

Continue reading