Home > Blogs > VMware VROOM! Blog > Tag Archives: big data

Tag Archives: big data

Introducing TPCx-HS Version 2 – An Industry Standard Benchmark for Apache Spark and Hadoop clusters deployed on premise or in the cloud

Since its release on August 2014, the TPCx-HS Hadoop benchmark has helped drive competition in the Big Data marketplace, generating 23 publications spanning 5 Hadoop distributions, 3 hardware vendors, 2 OS distributions and 1 virtualization platform. By all measures, it has proven to be a successful industry standard benchmark for Hadoop systems. However, the Big Data landscape has rapidly changed over the last 30 months. Key technologies have matured while new ones have risen to prominence in an effort to keep pace with the exponential expansion of datasets. One such technology is Apache Spark.

spark-logo-trademarkAccording to a Big Data survey published by the Taneja Group, more than half of the respondents reported actively using Spark, with a notable increase in usage over the 12 months following the survey. Clearly, Spark is an important component of any Big Data pipeline today. Interestingly, but not surprisingly, there is also a significant trend towards deploying Spark in the cloud. What is driving this adoption of Spark? Predominantly, performance.

Today, with the widespread adoption of Spark and its integration into many commercial Big Data platform offerings, I believe there needs to be a straightforward, industry standard way in which Spark performance and price/performance could be objectively measured and verified. Just like TPCx-HS Version 1 for Hadoop, the workload needs to be well understood and the metrics easily relatable to the end user.

Continuing on the Transaction Processing Performance Council’s commitment to bringing relevant benchmarks to the industry, it is my pleasure to announce TPCx-HS Version 2 for Spark and Hadoop. In keeping with important industry trends, not only does TPCx-HS support traditional on premise deployments, but also cloud.

I envision that TPCx-HS will continue to be a useful benchmark standard for customers as they evaluate Big Data deployments in terms of performance and price/performance, and for vendors in demonstrating the competitiveness of their products.

 

Tariq Magdon-Ismail

(Chair, TPCx-HS Benchmark Committee)

 

Additional Information:  TPC Press Release

New White Paper: Best Practices for Optimizing Big Data Performance on vSphere 6

A new white paper is available showing how to best deploy and configure vSphere for Big Data applications such as Hadoop and Spark. Hardware, software, and vSphere configuration parameters are documented, as well as tuning parameters for the operating system, Hadoop, and Spark.

The best practices were tested on a Dell 12-server cluster, with Hadoop installed on vSphere as well as on bare metal. Workloads for both Hadoop (TeraSort and TestDFSIO) and Spark (Support Vector Machines and Logistic Regression) were run on the cluster. The virtualized cluster outperformed the bare metal cluster by 5-10% for all MapReduce and Spark workloads with the exception of one Spark workload, which ran at parity. All workloads showed excellent scaling from 5 to 10 worker servers and from smaller to larger dataset sizes.

Continue reading

VMware vSphere 5.5 Performs Well Running Big Data Scenario with Greenplum

VMware recently released a white paper on the performance and best practices of running a Pivotal Greenplum database cluster in virtual machines. The paper reports the results of two studies. In each study, six physical machines are used in the Greenplum cluster. Three different big data workloads are run on the physical machines, and then on virtual machines in the same configuration.

One experiment compares a physical setup to a virtual configuration for running Greenplum segment servers, one per host. The response times of all the workloads in the virtual environment are within 6% of those measured in the physical environment.

Another test shows the performance impact of deploying multiple, smaller virtual machines instead of a single, large virtual machine on each segment host. The results from this test show that vSphere 5.5 provides a reduction of 11% in workload process time when compared to the same hardware configuration in a physical environment. The main performance gain occurs when each smaller virtual machine fits into a NUMA node on the physical host. For more information, please read the full paper: Greenplum Database Performance on VMware vSphere 5.5.