Home > Blogs > VMware VROOM! Blog > Tag Archives: vsphere 6.5

Tag Archives: vsphere 6.5

New White Paper: Fast Virtualized Hadoop and Spark on All-Flash Disks – Best Practices for Optimizing Virtualized Big Data Applications on VMware vSphere 6.5

A new white paper is available showing how to best deploy and configure vSphere 6.5 for Big Data applications such as Hadoop and Spark running on a cluster with fast processors, large memory, and all-flash storage (Non-Volatile Memory Express storage and solid state disks). Hardware, software, and vSphere configuration parameters are documented, as well as tuning parameters for the operating system, Hadoop, and Spark.

The best practices were tested on a 13-server cluster, with Hadoop installed on vSphere as well as on bare metal. Workloads for both Hadoop (TeraSort and TestDFSIO) and Spark Machine Learning Library routines (K-means clustering, Logistic Regression classification, and Random Forest decision trees) were run on the cluster. Configurations with 1, 2, and 4 VMs per host were tested as well as bare metal. Among the 4 virtualized configurations, 4 VMs per host ran fastest due to the best utilization of storage as well as the highest percentage of data transfer within a server. The 4 VMs per host configuration also ran faster than bare metal on all Hadoop and Spark tests but one.

Here are the results for the TeraSort suite:

And for Spark Random Forest decision trees:

Here are the best practices cited in this paper:

  • Reserve about 5-6% of total server memory for ESXi; use the remainder for the virtual machines.
  • Do not overcommit physical memory on any host server that is hosting Big Data workloads.
  • Create one or more virtual machines per NUMA node.
  • Limit the number of disks per DataNode to maximize the utilization of each disk: 4 to 6 is a good starting point.
  • Use eager-zeroed thick VMDKs along with the ext4 or xfs filesystem inside the guest.
  • Use the VMware Paravirtual SCSI (pvscsi) adapter for disk controllers; use all 4 virtual SCSI controllers available in vSphere 6.5.
  • Use the vmxnet3 network driver; configure virtual switches with MTU=9000 for jumbo frames.
  • Configure the guest operating system for Hadoop performance including enabling jumbo IP frames, reducing swappiness, and disabling transparent hugepage compaction.
  • Place Hadoop master roles, ZooKeeper, and journal nodes on three virtual machines for optimum performance and to enable high availability.
  • Dedicate the worker nodes to run only the HDFS DataNode, YARN NodeManager, and Spark Executor roles.
  • Run the Hive Metastore in a separate MySQL database.
  • Set the YARN cluster container memory and vcores to slightly overcommit both resources
  • Adjust the task memory and vcore requirement to optimize the number of maps and reduces for each application.

All details are in the paper.

DRS Lens – A new UI dashboard for DRS

DRS Lens provides an alternative UI for a DRS enabled cluster. It gives a simple, yet powerful interface to monitor the cluster real time and provide useful analyses to the users. The UI is comprised of different dashboards in the form of tabs for each cluster being monitored.

Continue reading

Oracle Database Performance on vSphere 6.5 Monster Virtual Machines

We have just published a new whitepaper on the performance of Oracle databases on vSphere 6.5 monster virtual machines. We took a look at the performance of the largest virtual machines possible on the previous four generations of four-socket Intel-based servers. The results show how performance of these large virtual machines continues to scale with the increases and improvements in server hardware.

Oracle Database Monster VM Performance across 4 generations of Intel based servers on vSphere 6.5

Oracle Database Monster VM Performance on vSphere 6.5 across 4 generations of Intel-based  four-socket servers

In addition to vSphere 6.5 and the four-socket Intel-based servers used in the testing, an IBM FlashSystem A9000 high performance all flash array was used. This array provided extreme low latency performance that enabled the database virtual machines to perform at the achieved high levels of performance.

Please read the full paper, Oracle Monster Virtual Machine Performance on VMware vSphere 6.5, for details on hardware, software, test setup, results, and more cool graphs.  The paper also covers performance gain from Hyper-Threading, performance effect of NUMA, and best practices for Oracle monster virtual machines. These best practices are focused on monster virtual machines, and it is recommended to also check out the full Oracle Databases on VMware Best Practices Guide.

Some similar tests with Microsoft SQL Server monster virtual machines were also recently completed on vSphere 6.5 by my colleague David Morse. Please see his blog post  and whitepaper for the full details.

This work on Oracle is in some ways a follow up to Project Capstone from 2015 and the resulting whitepaper Peeking at the Future with Giant Monster Virtual Machines . That project dealt with monster VM performance from a slightly different angle and might be interesting to those who are also interested in this paper and its results.

 

SQL Server VM Performance with VMware vSphere 6.5

Achieving optimal SQL Server performance on vSphere has been a constant focus here at VMware; I’ve published past performance studies with vSphere 5.5 and 6.0 which showed excellent performance up to the maximum VM size supported at the time.

Since then, there have been quite a few changes!  While this study uses a similar test methodology, it features an updated hypervisor (vSphere 6.5), database engine (SQL Server 2016), OLTP benchmark (DVD Store 3), and CPUs (Intel Xeon v4 processors with 24 cores per socket, codenamed Broadwell-EX).

Continue reading

Performance of Storage I/O Control (SIOC) with SSD Datastores – vSphere 6.5

With Storage I/O Control (SIOC), vSphere 6.5 administrators can adjust the storage performance of VMs so that VMs with critical workloads will get the I/Os per second (IOPS) they need. Admins assign shares (the proportion of IOPS allocated to the VM), limits (the upper bound of VM IOPS), and reservations (the lower bound of VM IOPS) to the VMs whose IOPS need to be controlled.  After shares, limits, and reservations have been set, SIOC is automatically triggered to meet the desired policies for the VMs.

A recently published paper shows the performance of SIOC meets expectations and successfully controls the number of IOPS for VM workloads.

Continue reading

vSphere 6.5 DRS Performance – A new white-paper

VMware recently announced the general availability of vSphere 6.5. Among the many new features in this release are some DRS specific ones like predictive DRS, and network-aware DRS. In vSphere 6.5, DRS also comes with a host of performance improvements like the all-new VM initial placement and the faster and more effective maintenance mode operation.

If you want to learn more about them, we published a new white-paper on the new features and performance improvements of DRS in vSphere 6.5. Here are some highlights from the paper:

 

65wp-blog-3

 

65wp-blog-2