Home > Blogs > VMware VROOM! Blog > Tag Archives: vmware

Tag Archives: vmware

New white paper: Big Data performance on VMware Cloud on AWS: Spark machine learning and IoT analytics performance on-premises and in the cloud

By Dave Jaffe

A new white paper is available comparing Spark machine learning performance on an 8-server on-premises cluster vs. a similarly configured VMware Cloud on AWS cluster.

Here is what the VMware Cloud on AWS cluster looked like:

Screenshot of cluster configuration

VMware Cloud on AWS configuration for performance tests

Three standard analytic programs from the Spark machine learning library (MLlib), K-means clustering, Logistic Regression classification, and Random Forest decision trees, were driven using spark-perf. In addition, a new, VMware-developed benchmark, IoT Analytics Benchmark, which models real-time machine learning on Internet-of-Things data streams, was used in the comparison. The benchmark is available from GitHub.

Continue reading

Persistent Memory Performance in vSphere 6.7

We published a paper that shows how VMware is helping advance PMEM technology by driving the virtualization enhancements in vSphere 6.7. The paper gives a detailed performance analysis of using PMEM technology on vSphere using various workloads and scenarios.

These are the key points that we cover in this white paper:

  • We explain how PMEM can be configured and used in a vSphere environment.
  • We show how applications with different characteristics can take advantage of PMEM in vSphere. Below are some of the use-cases:
    • How PMEM device limits can be achieved under vSphere with little to no overhead of virtualization. We show virtual-to-native ratio along with raw bandwidth and latency numbers from fio, an I/O microbenchmark.
    • How traditional relational databases like Oracle can benefit from using PMEM in vSphere.
    • How scaling-out VMs in vSphere can benefit from PMEM. We used Sysbench with MySQL to show such benefits.
    • How modifying applications (PMEM-aware) can get the best performance out of PMEM. We show performance data from such applications, e.g., an OLTP database like SQL Server and an in-memory database like Redis.
    • Using vMotion to migrate VMs with PMEM which is a host-local device just like NVMe SSDs. We also characterize in detail, vMotion performance of VMs with PMEM.
  • We outline some best practices on how to get the most out of PMEM in vSphere.

Read the full paper here.

Performance Best Practices Guide for vSphere 6.7

We are pleased to announce the availability of Performance Best Practices for VMware vSphere 6.7. This is a comprehensive book designed to help system administrators obtain the best performance from their vSphere 6.7 deployments.

The book covers new features as well as updating and expanding on many of the topics covered in previous versions.

These include:

  • Hardware-assisted virtualization
  • Storage hardware considerations
  • Network hardware considerations
  • Memory page sharing
  • Getting the best performance with iSCSI and NFS storage
  • Getting the best performance from NVMe drives
  • vSphere virtual machine encryption recommendations
  • Running storage latency-sensitive workloads
  • Network I/O Control (NetIOC)
  • DirectPath I/O
  • Running network latency-sensitive workloads
  • Microsoft Virtualization-Based Security (VBS)
  • CPU Hot Add
  • 4KB native drives
  • Selecting virtual network adapters
  • The vSphere HTML5 Client
  • vSphere web client configuration
  • Pair-wise balancing in DRS-enabled clusters
  • VMware vSphere update manager
  • VMware vSAN performance

The book can be found here.

Also, for a summary of the new performance-related features in vSphere 6.7, refer to What’s New in Performance.

Oracle Database Performance with VMware Cloud on AWS

You’ve probably already heard about VMware Cloud on Amazon Web Services (VMC on AWS). It’s the same vSphere platform that has been running business critical applications for years, but now it’s available on Amazon’s cloud infrastructure. Following up on the many tests that we have done with Oracle databases on vSphere, I was able to get some time on a VMC on AWS setup to see how Oracle databases perform in this new environment.

It is important to note that VMC on AWS is vSphere running on bare metal servers in Amazon’s infrastructure. The expectation is that performance will be very similar to “regular” onsite vSphere, with the added advantage that the hardware provisioning, software installation, and configuration is already done and the environment is ready to go when you login. The vCenter interface is the same, except that it references the Amazon instance type for the server.

Continue reading

Addressing Meltdown/Spectre in VMmark

The recently described Meltdown/Spectre vulnerabilities have implications throughout the tech industry, and the VMmark virtualization benchmark is no exception. In deciding how to approach the issue, the VMmark team’s goal was to address the impact of the these vulnerabilities while maintaining the value and integrity of the benchmark.

Applying the full set of currently available Meltdown/Spectre mitigations is likely to have a significant impact on VMmark scores. Because the mitigations are expected to continue evolving for some time, that impact might even change. If the VMmark team were to require the full set of mitigations in order for a submission to be compliant, that might make new submissions non-competitive with older ones, and also introduce more “noise” into VMmark scores as the mitigations evolve. While our intention for the future is that eventually all new VMmark results will be obtained on virtualization platforms that have the full set of Meltdown/Spectre mitigations, we have chosen to take a gradual approach.

Beginning May 8, 2018, all newly-published VMmark results must comply with a number of new requirements related to the Meltdown and Spectre vulnerabilities. These requirements are detailed in Appendix C of the latest edition of the VMmark User’s Guide.

Before performing any VMmark benchmark runs intended for publication, check the VMmark download page to make sure you’re using the latest edition of the VMmark User’s Guide.  If you have questions, you can reach the VMmark team at vmmark-info@vmware.com.

Performance of SQL Server 2017 for Linux VMs on vSphere 6.5

Microsoft SQL Server has long been one of the most popular applications for running on vSphere virtual machines.  Last year there was quite a bit of excitement when Microsoft announced they were bringing SQL Server to Linux.  Over the last year Microsoft has had quite a bit of interest in SQL Server for Linux and it was announced at Microsoft Ignite last month that it is now officially launched and generally available.

VMware and Microsoft have collaborated to validate and support the functionality and performance scalability of SQL Server 2017 on vSphere-based Linux VMs.  The results of that work show SQL Server 2017 for Linux installs easily and has great performance within VMware vSphere virtual machines. VMware vSphere is a great environment to be able to try out the new Linux version of SQL Server and be able to also get great performance.

Continue reading

Skylake Update – Oracle Database Performance on vSphere 6.5 Monster Virtual Machines

We were able to get one of the new four-socket Intel Skylake based servers and run some more tests. Specifically we used the Xeon Platinum 8180 processors with 28 cores each. The new data has been added to the Oracle Monster Virtual Machine Performance on VMware vSphere 6.5 whitepaper. Please check out the paper for the full details and context of these updates.

The generational testing in the paper now includes a fifth generation with a 112 vCPU virtual machine running on the Skylake based server. Performance gain from the initial 40 vCPU VM on Westmere-EX to the Skylake based 112 vCPU VM is almost 4x.

Continue reading

Updated – SQL Server VM Performance with vSphere 6.5, October 2017

Back in March, I published a performance study of SQL Server performance with vSphere 6.5 across multiple processor generations.  Since then, Intel has released a brand-new processor architecture: the Xeon Scalable platform, formerly known as Skylake.

Our team was fortunate enough to get early access to a server with these new processors inside – just in time for generating data that we presented to customers at VMworld 2017.

Each Xeon Platinum 8180 processor has 28 physical cores (pCores), and with four processors in the server, there was a whopping 112 pCores on one physical host!

Continue reading

New White Paper: Fast Virtualized Hadoop and Spark on All-Flash Disks – Best Practices for Optimizing Virtualized Big Data Applications on VMware vSphere 6.5

A new white paper is available showing how to best deploy and configure vSphere 6.5 for Big Data applications such as Hadoop and Spark running on a cluster with fast processors, large memory, and all-flash storage (Non-Volatile Memory Express storage and solid state disks). Hardware, software, and vSphere configuration parameters are documented, as well as tuning parameters for the operating system, Hadoop, and Spark.

The best practices were tested on a 13-server cluster, with Hadoop installed on vSphere as well as on bare metal. Workloads for both Hadoop (TeraSort and TestDFSIO) and Spark Machine Learning Library routines (K-means clustering, Logistic Regression classification, and Random Forest decision trees) were run on the cluster. Configurations with 1, 2, and 4 VMs per host were tested as well as bare metal. Among the 4 virtualized configurations, 4 VMs per host ran fastest due to the best utilization of storage as well as the highest percentage of data transfer within a server. The 4 VMs per host configuration also ran faster than bare metal on all Hadoop and Spark tests but one.

Continue reading

DRS Lens – A new UI dashboard for DRS

DRS Lens provides an alternative UI for a DRS enabled cluster. It gives a simple, yet powerful interface to monitor the cluster real time and provide useful analyses to the users. The UI is comprised of different dashboards in the form of tabs for each cluster being monitored.

Continue reading