Home > Blogs > VMware VROOM! Blog > Tag Archives: VMs

Tag Archives: VMs

New White Paper: High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning

By Dave Jaffe, VMware Performance Engineering

A new white paper is available showing the advantages of running virtualized Spark Deep Learning workloads on Kubernetes.

Recent versions of Spark include support for Kubernetes. For Spark on Kubernetes, the Kubernetes scheduler provides the cluster manager capability provided by Yet Another Resource Negotiator (YARN) in typical Spark on Hadoop clusters. Upon receiving a spark-submit command to start an application, Kubernetes instantiates the requested number of Spark executor pods, each with one or more Spark executors.

The benefits of running Spark on Kubernetes are many: ease of deployment, resource sharing, simplifying the coordination between developer and cluster administrator, and enhanced security. A standalone Spark cluster on vSphere virtual machines running in the same configuration as a Kubernetes-managed Spark cluster on vSphere virtual machines were compared for performance using a heavy workload, and the difference imposed by Kubernetes was found to be insignificant.

Spark applications running in Standalone mode require that every Spark worker node be installed with the correct version of Spark, Python, Java, etc. This puts a burden on the IT administrator, who may be managing many Spark applications with different requirements, and it requires coordination between the administrator and the application developer. With Kubernetes, the developer only needs to create a container with the correct software, and the IT administrator just needs to manage the cluster using the fine-grained resource management tools to enable the different Spark workloads.

To compare Spark Standalone performance to Spark on Kubernetes performance, a Deep Learning workload, the Maximum Throughput Spark BigDL ResNet50 image classifier from VMware IoT Analytics Benchmark, was run on the same 16 worker nodes, first while configured as Spark worker nodes, then while configured as Kubernetes nodes. Then the number of nodes was reduced by four (by removing the four workers on host 4), and the same comparison was made using 12 nodes, then 8, then 4.

The relative results are shown below. The Spark Standalone and Spark on Kubernetes performance in terms of images per second classified was within ~1% of each other for all configurations. Performance scaled well for the Spark tests as the number of VMs increased from 4 (1 server) to 16 (4 servers).

All details are in the paper.

Performance of VMware vCenter Server 6.7 in Remote Offices and Branch Offices

The VMware Performance team has published an updated paper detailing vCenter Server 6.7 performance in a remote offices and branch offices (ROBO) environment.

Many organizations today have a ROBO environment with local IT infrastructure. These remote locations usually have anywhere from a few servers running a few workloads to support local needs, to numerous servers spanning a large-scale datacenter. The distributed and remote nature of this infrastructure makes it hard to manage, difficult to protect, and costly to maintain. Further, the remote nature of servers makes it more challenging to perform important VM/host-related operations.

vSphere is designed to address these ROBO use cases, including IT infrastructure located in remote, distributed sites. VMware vCenter Server provides a centralized way to control and monitor the virtual infrastructure, including ESXi hosts, virtual machines, storage, and networking resources. It has been widely deployed in a ROBO environment to manage ESXi hosts that are distributed over large geographical distances over a wide range of networks with different network characteristics, including low/high bandwidth, network latency, and packet error rates. In the paper, we test:

  • LAN with high-bandwidth and low-latency links.
  • WAN with low-bandwidth and high-latency links.
  • Various networks in between; for example, DSL, T1, 4G, 5G, …

We demonstrate that vCenter Server performs well in the ROBO environment for both network bandwidth use, as well as virtual machine and ESXi host task execution times. Instead of a bandwidth restriction, we observe that network latency has a bigger impact on the overall performance. As the network latency between vCenter Server and ESXi hosts increases, the average operation latency also increases. The experimental results also show how efficiently vCenter Server executes VM operations in high-latency networks: The average VM operation execution time increases much more slowly when network latency increases by several times.

Read the paper: Performance of VMware vCenter Server 6.7 in Remote Offices and Branch Offices.

Virtual SAN 6.2 Performance with OLTP and VDI Workloads

Virtual SAN is a VMware storage solution that is tightly integrated with vSphere—making storage setup and maintenance in a vSphere virtualized environment fast and flexible. Virtual SAN 6.2 adds several features and improvements, including additional data integrity with software checksum, space efficiency features of RAID-5 and RAID-6, deduplication and compression, and an in-memory client read cache.

We ran several tests to compare the performance of Virtual SAN 6.1 and 6.2 to make sure they were on par with each other.

Continue reading