Home > Blogs > VMware VROOM! Blog > Monthly Archives: March 2017

Monthly Archives: March 2017

SQL Server VM Performance with VMware vSphere 6.5

Achieving optimal SQL Server performance on vSphere has been a constant focus here at VMware; I’ve published past performance studies with vSphere 5.5 and 6.0 which showed excellent performance up to the maximum VM size supported at the time.

Since then, there have been quite a few changes!  While this study uses a similar test methodology, it features an updated hypervisor (vSphere 6.5), database engine (SQL Server 2016), OLTP benchmark (DVD Store 3), and CPUs (Intel Xeon v4 processors with 24 cores per socket, codenamed Broadwell-EX).

Continue reading

Performance of Storage I/O Control (SIOC) with SSD Datastores – vSphere 6.5

With Storage I/O Control (SIOC), vSphere 6.5 administrators can adjust the storage performance of VMs so that VMs with critical workloads will get the I/Os per second (IOPS) they need. Admins assign shares (the proportion of IOPS allocated to the VM), limits (the upper bound of VM IOPS), and reservations (the lower bound of VM IOPS) to the VMs whose IOPS need to be controlled.  After shares, limits, and reservations have been set, SIOC is automatically triggered to meet the desired policies for the VMs.

A recently published paper shows the performance of SIOC meets expectations and successfully controls the number of IOPS for VM workloads.

Continue reading

Virtual Machine vCPU and vNUMA Rightsizing – Rules of Thumb

Using virtualization, we have all enjoyed the flexibility to quickly create virtual machines with various virtual CPU (vCPU) configurations for a diverse set of workloads.  But as we virtualize larger and more demanding workloads, like databases, on top of the latest generations of processors with up to 24 cores, special care must be taken in vCPU and vNUMA configuration to ensure performance is optimized.

Continue reading

Machine Learning on vSphere 6 with Nvidia GPUs – Episode 2

by Hari Sivaraman, Uday Kurkure, and Lan Vu

In a previous blog [1], we looked at how machine learning workloads (MNIST and CIFAR-10) using TensorFlow running in vSphere 6 VMs in an NVIDIA GRID configuration reduced the training time from hours to minutes when compared to the same system running no virtual GPUs.

Here, we extend our study to multiple workloads—3D CAD and machine learning—run at the same time vs. run independently on a same vSphere server.

Continue reading