Home > Blogs > VMware VROOM! Blog


Each vSphere release introduces new vMotion functionality, increased reliability and significant performance improvements. vSphere 5.5 continues this trend by offering new enhancements to vMotion to support EMC VPLEX Metro, which enables shared data access across metro distances.

In this blog, we evaluate vMotion performance on a VMware vSphere 5.5 virtual infrastructure that was stretched across two geographically dispersed datacenters using EMC VPLEX Metro.

Test Configuration

The VPLEX Metro test bed consisted of two identical VPLEX clusters, each with the following hardware configuration:

• Dell R610 host, 8 cores, 48GB memory, Broadcom BCM5709 1GbE NIC
• A single engine (two directors) VPLEX Metro IP appliance
• FC storage switch
• VNX array, FC connectivity, VMFS 5 volume on a 15-disk RAID-5 LUN


Figure 1. Logical layout of the VPLEX Metro deployment

Figure 1 illustrates the deployment of the VPLEX Metro system used for vMotion testing. The figure shows two data centers, each with a vSphere host connected to a VPLEX Metro appliance. The VPLEX virtual volumes presented to the vSphere hosts in each data center are synchronous, distributed volumes that mirror data between the two VPLEX clusters using write-through caching. As a result, vMotion views the underlying storage as shared storage, or exactly equivalent to a SAN that both source and destination hosts have access to. Hence, vMotion in a Metro VPLEX environment is as easy as traditional vMotion that live migrates only the memory and device state of a virtual machine.

The two VPLEX Metro appliances in our test configuration used IP-based connectivity. The vMotion network between the two ESXi hosts used a physical network link distinct from the VPLEX network. The Round Trip Time (RTT) latency on both VPLEX and vMotion networks was 10 milliseconds.

Measuring vMotion Performance

The following metrics were used to understand the performance implications of vMotion:

• Migration Time: Total time taken for migration to complete
• Switch-over Time: Time during which the VM is quiesced to enable switchover from source to the destination host
• Guest Penalty: Performance impact on the applications running inside the VM during and after the migration

Test Results


Figure 2. VPLEX Metro vMotion performance in vSphere 5.1 and vSphere 5.5

Figure 2 compares VPLEX Metro vMotion performance results in vSphere 5.1 and vSphere 5.5 environments. The test scenario used an idle VM configured with 2 VCPUs and 2GB memory. The figure shows a minor difference in the total migration time between the two vSphere environments and a significant improvement in vMotion switch-over time in the vSphere 5.5 environment. The switch-over time reduced from about 1.1 seconds to about 0.6 second (a nearly 2x improvement), thanks to a number of performance enhancements that are included in the vSphere 5.5 release.

We also investigated the impact of VPLEX Metro live migration on Microsoft SQL Server online transaction processing (OLTP) performance using the open-source DVD Store workload. The test scenario used a Windows Server 2008 VM configured with 4 VCPUs, 8GB memory, and a SQL Server database size of 50GB.


Figure 3. VPLEX Metro vMotion impact on SQL Server Performance

Figure 3 plots the performance of a SQL Server virtual machine in orders processed per second at a given time—before, during, and after VPLEX Metro vMotion. As shown in the figure, the impact on SQL Server throughput was very minimal during vMotion. The SQL Server throughput on the destination host was around 310 orders per second, compared to the throughput of 350 orders per second on the source host. This throughput drop after vMotion is due to the VPLEX inter-cluster cache coherency interactions and is expected. For some time after the vMotion, the destination VPLEX cluster continued to send cache page queries to the source VPLEX cluster and this has some impact on performance. After all the metadata is fully migrated to the destination cluster, we observed the SQL Server throughput increase to 350 orders per second, the same level of throughput seen prior to vMotion.

These performance test results show the following:

  • Remarkable improvements in vSphere 5.5 towards reducing vMotion switch-over time during metro migrations (for example, a nearly 2x improvement over vSphere 5.1)
  • VMware vMotion in vSphere 5.5 paired with EMC VPLEX Metro can provide workload federation over a metro distance by enabling administrators to dynamically distribute and balance the workloads seamlessly across data centers

To find out more about the test configuration, performance results, and best practices to follow, see our recently published performance study.

2 thoughts on “VMware vSphere 5.5 vMotion on EMC VPLEX Metro

  1. Shane

    An interesting read.
    Are the same enhancements available to other SAN MetroClusters, such as the one from NetApp?

    Thanks.

    Reply
  2. Sreekanth Setty

    vMotion should just work with any type of active-active Metro storage/replication solution. The performance enhancements included in vSphere 5.5 should help any Metro replication solution. At present we don’t “technically” support other Metro solutions with 10ms RTT latency, although the efforts are underway to support them in future.

    Reply

Leave a Reply

Your email address will not be published. Required fields are marked *

*