posted

2 Comments

In the first post, I covered how to add Cloud Accounts and view discovered compute and network resources in Cloud Assembly.  If you missed the first post or need a refresher, click here – part 1 – to check it out.  Each of the posts in this series assumes you have access to Cloud Assembly with the pre-reqs for provisioning handled.  You will also want NSX configured and running with uplink connectivity to your gateway.

Let’s dive in.  Network Profiles control which network constructs are used for placement decisions during a deploy.  They also control the level of isolation a workload will have when deployed.  If you recall from the first post, I added vc-south and nsx-south environments and will continue working with those entities.  In the examples, two network profiles have been created for nsx-south, the NSX-T environment.  Each profile widget includes a summary of the compute and networking entities associated with the profile.  The options for NSX-v and NSX-T are very similar, with some differences behind the scenes, but essentially the same end results.  The first networkTypes I will cover are Existing networks and Outbound on-demand networks.  I’ll cover Private on-demand security group options, public and routed networks in the third post.

 

Working with Infrastructure as Code Blueprints

 

The best place to begin learning how Cloud Assembly interacts with networking is by looking at a blueprint.  Selecting the Blueprints option allows you to add and interact with blueprints.  I’ll start by opening the example blueprint called Single-VM-Nat.  As the blueprint name suggests, a single machine object and network with a NAT rule will be created, among other configurations, during the deployment.

 

 

To create a similar blueprint, simply drag the Cloud Agnostic machine object and NSX Network object to the canvas.  I highlighted the portion of YAML which tells Code Assembly what network capabilities to look for during a deployment.  In the example below, I’ve selected an NSX network entity.  The networkType: outbound property will create a new network with outbound access and NAT configured.  The networkType setting instructs the placement engine to look for a network profile that matches the request.  But I’m getting ahead of myself, I’ll provide more detail on network profile and blueprint interactions later in the post.

Note: you could also drag a Cloud Agnostic or vSphere network onto the canvas.  For this example, I chose NSX in order to display all available networkTypes in the blueprint.

 

 

Before moving forward, I removed outbound from the YAML panel by backing out outbound.  Doing so displays available networkType options as shown below.  We’ll go through each type and I’ll show you how to configure Cloud Assembly network profiles to accommodate each blueprint setting.

 

Network Type Existing

 

networkType: existing uses a discovered network or deployed network Origin type.  I know that can be confusing so let me explain.

  • Discovered origin: manually created network objects found through the Cloud Assembly discovery service
  • Deployed origin: network objects provisioned by Cloud Assembly

For example, a provider network would appear as deployed.  A provider network is created from a blueprint where the only object on the canvas is a network.  No machines are associated.  There are scenarios where an organization may want to create a static provider network for developers to use without creating an on-demand network each time a deployment occurs.  The key thing to remember is both Origin types can be used for existing networkType provisioning.

When NSX is involved, deployed and discovered networks can be a switch configured for VXLAN or Geneve overlay networking.  The switch could be VLAN backed too.  Workloads deployed, using networkType: existing, with either Origin type, will use static or dynamically assigned IP addresses depending on your NSX, VM, and configuration management options.

Switching from my blueprint to a network profile, I’ve selected the Networks option.  I added existing networks, notice the switch configured manually (outside Cloud Assembly) shows Discovered for an Origin, whereas the Cloud Assembly created switch shows Deployed, as I mentioned.

 

 

In another example, I added existing networks that will be used for placement decisions.  I chose App and DB with the constraint tags net:app and net:db for each switch.  Constraint tags allow me to assign specific networks to each tier of my application in the blueprint.  The switches have their own DHCP server and assigned IP range.  Remember, for Existing networks, DHCP is configured in NSX independently from Cloud Assembly.  So using this configuration, App and DB will have their own distinct IP ranges.

 

 

Next, switch to the Network Policies option and confirm the Do not create on-demand network or on-demand security group radio button is selected, as shown in the screenshot.  Don’t forget to confirm the Existing network, T-0 logical router, and Edge cluster provide the desired network connectivity for your VMs.

 

Network Type Outbound

 

networkType: outbound creates on-demand networks.  By default a mixed DHCP and Static IP range assignment is used for on-demand networks.  I’ll provide more detail on range assignments later in this post.  When DHCP is selected for a range assignment with NSX-T, a new T-1 gateway (aka logical router), L2 switch, one-to-many SNAT rule, DHCP server with IP pool, NAT route advertisement, and the proper uplinks/downlinks will be created for each blueprint deployment.  Allocated static IPs and DHCP IP pools are based upon the CIDR and subnetting configuration specified in the network policies and network options.

 

 

Outbound networkTypes require that we have a network configured with a routable network range.  Well, it’s ‘required’ if you want external network connectivity!  In the example, I used my VLAN backed Management – Switch and a pool of routable IPs.  The correct routed network CIDR must be used for placement decisions and IP allocation.  Click the checkbox for the switch and choose Manage IP Ranges.

 

 

Manage IP Ranges creates a pool of routable IPs Cloud Assembly will allocate for use as translated external IPs.  The IPs are assigned to each SNAT rule that is created in NSX.

Remember Cloud Assembly requires a fully configured NSX environment, with uplink connectivity to an underlay network, for this specific scenario to work properly.

 

 

 

Cloud Assembly will track the allocation of IP addresses using the built-in IPAM capability.  Click the IP range name to view allocation details.  If you are running out of IP addresses, simply modify the start and end IP addresses to increase the pool size.  Alternatively a new IP range can be added.  Infoblox IPAM can be used to manage and track IP allocation as well.

 

 

 

Switching to the Network Policies option, in a network profile, select the Create an on-demand network radio button.  Then you must add the discovered transport zone, external switch, T-0 gateway, and Edge cluster.  You will need to add a desired network CIDR, subnet size, and IP range assignment.  In the example, I chose /27.  Meaning a separate /27, based on the defined CIDR, will be assigned to each on-demand network that’s created.

 

 

 

Clicking the Subnet size dropdown presents the available subnet size options.  Subnet size instructs Cloud Assembly to create a new network based on a portion of the defined CIDR, in this case part of 172.80.1.0/24.  Remember with NSX-T, a T-1 gateway, switch, DHCP server and pool, route advertisement change, plus SNAT rule is configured for each /27 network Cloud Assembly adds.  The VM(s) are assigned to the switch as part of the deployment process.  This is a really cool option, and is similar to how a network team might carve up private network ranges in an underlay network, but with far less effort and a much shorter time for creation.

 

Subnet size options

 

IP range assignment controls how Cloud Assembly will assign IP addresses to VMs.  I mentioned before that the default is Static and DHCP (or mixed) when a new profile is created.  The Static and DHCP setting instructs Cloud Assembly to create two IP ranges.  In my example, I used a /27, so two /28s will be created for IP assignment.  Where applicable, one /28 will be used to assign static IP addresses to VMs and the other for dynamic assignment to VMs.  All of this happens behind the scenes, there’s no need to worry about further configuration in Cloud Assembly.  You can also choose either Static or DHCP from the drop down.  In that case only one range is created and IPs are assigned based on either setting.

Two things to note, there is an exception to subnet size changes behind the scenes, when a /29 Subnet size is selected, we don’t create two /30s.  Deployments will fail if a /29 is used when IP range assignment is set to Static and DHCP.  Also IP range assignment is supported for outbound, routed, and private network types.

 

Choose an IP range assignment

 

The blueprint controls whether a VM receives a static or dynamic IP.  Add assignment: static to the network properties of a VM in the blueprint to assign a static address.  If assignment: static isn’t present, a dynamic IP address will be used.

 

Adding assignment: static in the blueprint

 

Summary and NSX Sizing

 

In summary, each time a blueprint with networkType: outbound is deployed, Cloud Assembly is instructing NSX to spin up networking entities and make numerous configuration changes.  In fact, it’s so easy to create on-demand networks (and delete them) in NSX, you will want to provide governance over their creation and use to minimize potential network sprawl and stay below NSX-T maximums.  This situation is also where Provider networks often come into play.  Additionally, you can control the number of T-1s that are created by choosing a larger subnet size.  Cloud Assembly will stop provisioning networks once it can’t carve up the CIDR any further.   Instance limits and leases offer further ways to manage resource utilization.  For visibility purposes, the network resources view in Cloud Assembly shows what has been deployed through Cloud Assembly to NSX too.  Of course, if you want the best visibility into your NSX and vSphere (plus public cloud) networking and security configurations, there is no better product than vRealize Network Insight!

Now that you see how easy it is to create and use networks in NSX, don’t hesitate to try it out in your environment.  In the next post, I’ll go through the other network types and ability to use NSX security groups.  For the next two posts, existing and on demand load balancers are on tap.

 

Network Automation with Cloud Assembly and NSX part 1 – Network Automation with Cloud Assembly and NSX part 3Network Automation with Cloud Assembly and NSX part 4