
UberCloud on VMware vSphere:

Introduction:

Enterprise HPC Infrastructure teams supporting engineers have a challenging task keeping up with the latest
advances in Hardware and capabilities. Until recently, engineers relied on their workstations and bare metal
compute clusters for their HPC simulations. The downside, a workstation is not suitable for running very large,
compute intensive simulation jobs and bare metal clusters are not the best solution for an organization. Legacy
HPC are usually independent HPC Silos per organization resulting in underutilization of resources. In the article
VMWare Solutions Enhance HPC, we showed the tremendous benefits of consolidation and virtualizing HPC
infrastructure compared to bare metal environments

Cloud like Capabilities for HPC environments:
HPC Cloud solution providers like UberCloud can combine powerful virtualized HPC hardware with superior
management capabilities to help, IT dynamically provision and manage HPC clusters, deploy simulation
software applications, monitor their spend, and give them complete control. In this solution we combine the
capabilities of the VMware platform, with the solution provided by HPC Cloud provider UberCloud. The
UberCloud solution leverages the automation capabilities of Terraform with the unique packaging and
distributing capabilities of docker containers to dynamically deploy HPC applications on the vSphere platform.
Containers complement VMs in application management and distribution. By sandboxing applications in
containers, applications become portable, and the same application can be deployed to different VMs without
requiring creating multiple variations of VM images for every application. It speeds up the development and
testing, yielding significant acceleration to the change management process. Containers that fail can be removed
and replaced without noticeable impact on service.

The core capabilities that are enabled by the solution include:

• Provisioning and managing HPC clusters that are easily setup for users in minutes.
• Rapidly deploying ready-to-run instances with pre-installed HPC software eliminating the need for

complex software installation and configuration.
• Optimized use of resources shared across multiple groups of HPC users with scale up and scale down

capabilities.

UberCloud on vSphere Solution:

In this solution we deployed two different use cases

• Single node deployment with all components included
• Distributed deployment with a head node, a GUI node and three worker nodes for a distributed workload

Single Node Deployment:

This is a simple deployment of UberCloud on vSphere. A Single VM is deployed and all components are
downloaded and installed dynamically. The single node includes the head node, GUI node and the worker node
components.

The vCenter access and the components of the deployment are defined in the Terraform file. The single virtual
machine with the requisite cores and memory is automatically created in the vCenter at the specified location
and the template UberCloud VM image is deployed. Followed by deployment the requisite docker images are
downloaded and installed automatically.

The Terraform script is launched and is use to create the VM, download and install docker, configure the
application and verify its readiness for use as shown below

Figure 1: Virtual machine deployment and configuration

Figure 2: Docker components and containers with HPC applications are installed

Figure 3: Virtual machine representing the single node deployment

Once all the components are deployed successfully the end user is sent an email with a link to login to the
environment along with a uniquely generated password as shown below.

Figure 4: UberCloud email with remote access details
The link and the password can be used to login to the environment with a browser and the user interface on
login is as shown below.

Figure 5: ANSYS application running on the vSphere based private cloud

 Distributed Use cases (ANSYS)

HPC uses distributed computed pervasively to solve many of the most difficult problems. Ansys provides the
Distributed Solve Option (DSO) as a productivity enhancement tool that accelerates sweeps of design variations
by distributing the design parameters across a network of processors. A distributed solution was deployed with
UberCloud and ANSYS leveraging Terraform automation as a second phase of the solution.

Distributed Computing solves many high-level business challenges:

• Enterprises can more effectively and robustly utilize their compute resources to optimize their designs.
• Design iterations are faster, delivering new products to market in a fraction of the time.
• Design evaluation is approaching true scalability.
• Businesses can use this flexible heterogeneous computing infrastructure in private and public cloud

environments to solve engineering challenges locally or tie into any compute resources worldwide.

Distributed Deployment:

Using similar Terraform based automation a distributed deployment of ANSYS HPC components was
accomplished. The virtual machines deployed for the distributed solution as shown below. This deployment
uses a GUI node, a head node and three compute nodes. The GUI node was allocated a NVIDIA vGPU for good
graphical performance leverage vSphere capabilities with acclerators.

Figure 6: Virtual components of distributed HPC workload

The solution was deployed and a distributed test script was executed on the HPC cluster leveraging ANSYS
FLUENT. The script shown below leverages MPI over TCP and uses 12 processors.

Figure 7: Script for test use case

The image below shows execution of the script with the three worker nodes.

Figure 8: Execution of distributed workload

The computation proceeds to convergence over multiple steps as show below.

Figure 9: Convergence of the distributed computation

Conclusion:

vSphere is an excellent platform for High Performance computing. This UberCloud based HPC solution on
vSphere was deployed with Terraform and successfully demonstrated. All the applications were
containerized and hosted within vSphere. The solution show cased the ability to fully package a HPC
application with automated deployment and tear down in a matter of minutes. HPC users can be highly
productive and get the environment ready on demand rather than having to wait for many weeks or
months in the case of bare metal environments. The solution can scale to tens of nodes and also be
leveraged for distributed computing.

Appendix A: Terraform Script used for environment creation

variable "vsphere_user" {

 default = "xxxx@xxxx.local"

}

variable "vsphere_password" {

 default = "XXXXXX"

}

variable "vsphere_server" {

 default = "sc2vc03.xxxx.local"

}

variable "datacenter_name" {

 default = "SC2"

}

variable "datastore_name" {

 default = "UberCloud01"

}

variable "iso_datastore_name" {

 default = "UberCloud01"

}

variable "resource_pool_name" {

 default = "UberCloud"

}

variable "network_name" {

 default = "vDS-Mgmt-Comp-Management"

}

variable "network1_name" {

 default = "vDS-Comp-vMotion"

}

variable "network2_name" {

 default = "vDS-1610"

}

variable "vm_template_name" {

 default = "newbscentos"

}

variable "resource_name" {

 default = "centos7-VM"

}

variable "vm_admin_password" {

 default = "******"

}

variable "vm_admin_user" {

 default = "root"

}

variable "headnode_number_of_cpucore" {

 default = "4"

}

variable "headnode_memorysize" {

 default = "15360"

}

variable "number_of_computenode" {

 default = 3

}

variable "computenode_number_of_cpucore" {

 default = "4"

}

variable "computenode_memorysize" {

 default = "15360"

}

variable "guinode_number_of_cpucore" {

 default = "4"

}

variable "guinode_memorysize" {

 default = "15360"

}

/**/

variable "cluster_name" {

 default = "VSphereCluster"

}

locals {

head_node_name = "${var.cluster_name}-hn"

gui_node_name = "${var.cluster_name}-gui"

compute_node_prefix="${var.cluster_name}-cn"

}

variable "customer_email_address" {

 default = "baris.inaloz@theubercloud.com"

}

variable "isv_license_server" {

 default = "2325:1055@ansys-ls118.theubercloud.net"

}

variable "dcv_license_server" {

 default = "5053@ls-001.theubercloud.net"

}

variable "container_ssh_port" {

 default = "22"

}

variable "container_gui_port" {

 default = "443"

}

/**/

variable "docker_registry_login_uri" {

 default = "registry.theubercloud.com"

}

variable "docker_registry_username" {

 default = "baris"

}

variable "docker_registry_password" {

 default = "nnobankimun1001"

}

variable "container_image_uri" {

 default = "registry.theubercloud.com/library_staging/ansys_19.2_centos_7"

}

/***/

provider "vsphere" {

 user = "${var.vsphere_user}"

 password = "${var.vsphere_password}"

 vsphere_server = "${var.vsphere_server}"

 # If you have a self-signed cert

 allow_unverified_ssl = true

}

data "vsphere_datacenter" "dc" {

 name = "${var.datacenter_name}"

}

data "vsphere_datastore" "datastore" {

 name = "${var.datastore_name}"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_datastore" "iso_datastore" {

 name = "${var.iso_datastore_name}"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_resource_pool" "pool" {

 name = "${var.resource_pool_name}"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_network" "network" {

 name = "${var.network_name}"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_network" "network1" {

 name = "${var.network1_name}"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_network" "network2" {

 name = "${var.network2_name}"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_network" "emptynetwork" {

 name = "VM Network"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

data "vsphere_virtual_machine" "template" {

 name = "${var.vm_template_name}"

 datacenter_id = "${data.vsphere_datacenter.dc.id}"

}

resource "vsphere_virtual_machine" "headnode" {

 name = "${local.head_node_name}"

 resource_pool_id = "${data.vsphere_resource_pool.pool.id}"

 datastore_id = "${data.vsphere_datastore.datastore.id}"

 num_cpus = "${var.headnode_number_of_cpucore}"

 memory = "${var.headnode_memorysize}"

 guest_id = "${data.vsphere_virtual_machine.template.guest_id}"

 scsi_type = "${data.vsphere_virtual_machine.template.scsi_type}"

 network_interface {

 network_id = "${data.vsphere_network.network.id}"

 adapter_type = "${data.vsphere_virtual_machine.template.network_interface_types[0]}"

 }

 network_interface {

 network_id = "${data.vsphere_network.network2.id}"

 adapter_type = "${data.vsphere_virtual_machine.template.network_interface_types[0]}"

 }

 disk {

 label = "disk0"

 size = "${data.vsphere_virtual_machine.template.disks.0.size}"

 size = 160

 eagerly_scrub = "${data.vsphere_virtual_machine.template.disks.0.eagerly_scrub}"

 thin_provisioned = "${data.vsphere_virtual_machine.template.disks.0.thin_provisioned}"

 }

wait_for_guest_net_timeout=15

 clone {

 template_uuid = "${data.vsphere_virtual_machine.template.id}"

 }

}

resource "null_resource" "headnode" {

connection {

 host="${vsphere_virtual_machine.headnode.*.default_ip_address}"

 user = "${var.vm_admin_user}"

 password = "${var.vm_admin_password}"

 }

 provisioner "file" {

 source = "compose.yaml"

 destination = "/home/centos/compose.yaml"

 }

 provisioner "remote-exec" {

 inline = [

 "${local.headnode_init_script}",

]

 }

 triggers = {

 "after" = "${vsphere_virtual_machine.headnode.id}"

 }

}

resource "vsphere_virtual_machine" "guinode" {

 name = "${local.gui_node_name}"

 resource_pool_id = "${data.vsphere_resource_pool.pool.id}"

 datastore_id = "${data.vsphere_datastore.datastore.id}"

 num_cpus = "${var.guinode_number_of_cpucore}"

 memory = "${var.guinode_memorysize}"

 guest_id = "${data.vsphere_virtual_machine.template.guest_id}"

 scsi_type = "${data.vsphere_virtual_machine.template.scsi_type}"

 network_interface {

 network_id = "${data.vsphere_network.network.id}"

 adapter_type = "${data.vsphere_virtual_machine.template.network_interface_types[0]}"

 }

 network_interface {

 network_id = "${data.vsphere_network.network2.id}"

 adapter_type = "${data.vsphere_virtual_machine.template.network_interface_types[0]}"

 }

 disk {

 label = "disk0"

 size = "${data.vsphere_virtual_machine.template.disks.0.size}"

 eagerly_scrub = "${data.vsphere_virtual_machine.template.disks.0.eagerly_scrub}"

 thin_provisioned = "${data.vsphere_virtual_machine.template.disks.0.thin_provisioned}"

 }

wait_for_guest_net_timeout=15

 clone {

 template_uuid = "${data.vsphere_virtual_machine.template.id}"

 }

}

resource "null_resource" "guinode" {

connection {

 host="${vsphere_virtual_machine.guinode.*.default_ip_address}"

 user = "${var.vm_admin_user}"

 password = "${var.vm_admin_password}"

 }

 provisioner "file" {

 source = "compose.yaml"

 destination = "/home/centos/compose.yaml"

 }

 provisioner "remote-exec" {

 inline = [

 "${local.gui_init_script}",

]

 }

 triggers = {

 "after" = "${vsphere_virtual_machine.guinode.id}"

 }

}

resource "vsphere_virtual_machine" "computenode" {

 depends_on = ["vsphere_virtual_machine.headnode","vsphere_virtual_machine.guinode"]

 count ="${var.number_of_computenode}"

 name = "${local.compute_node_prefix}${count.index+1}"

 resource_pool_id = "${data.vsphere_resource_pool.pool.id}"

 datastore_id = "${data.vsphere_datastore.datastore.id}"

 num_cpus = "${var.computenode_number_of_cpucore}"

 memory = "${var.computenode_memorysize}"

 guest_id = "${data.vsphere_virtual_machine.template.guest_id}"

 scsi_type = "${data.vsphere_virtual_machine.template.scsi_type}"

 network_interface {

 network_id = "${data.vsphere_network.network.id}"

 adapter_type = "${data.vsphere_virtual_machine.template.network_interface_types[0]}"

 }

 network_interface {

 network_id = "${data.vsphere_network.network2.id}"

 adapter_type = "${data.vsphere_virtual_machine.template.network_interface_types[0]}"

 }

 disk {

 label = "disk0"

 size = "${data.vsphere_virtual_machine.template.disks.0.size}"

 eagerly_scrub = "${data.vsphere_virtual_machine.template.disks.0.eagerly_scrub}"

 thin_provisioned = "${data.vsphere_virtual_machine.template.disks.0.thin_provisioned}"

 }

wait_for_guest_net_timeout=15

 clone {

 template_uuid = "${data.vsphere_virtual_machine.template.id}"

 }

}

resource "null_resource" "computenode" {

 count = "${var.number_of_computenode}"

 triggers {

 cluster_instance_ids = "${vsphere_virtual_machine.headnode.id}"

 }

connection {

 host="${element(vsphere_virtual_machine.computenode.*.default_ip_address, count.index)}"

 user = "${var.vm_admin_user}"

 password = "${var.vm_admin_password}"

 }

 provisioner "file" {

 source = "compose.yaml"

 destination = "/home/centos/compose.yaml"

 }

 provisioner "remote-exec" {

 inline = [

 "${local.compute_init_script}",

]

 }

}

