VMware Virtual SAN
Routed Network
Deployments with Brocade

Deployments

TECHNICAL WHITE PAPER
Table of Contents

- Introduction .. 2
- VMware Virtual SAN Overview .. 3
- Brocade Network Overview .. 4
- Proposed Network Architecture .. 7
- Networking Protocols ... 9
 - IP Multicast .. 9
 - Protocol-Independent Multicast (PIM) ... 10
- Network Configuration Considerations .. 11
- Enterprise Infrastructure Availability and Resiliency ... 13
 - Network Device Connectivity ... 13
 - Virtual SAN Accessibility and Availability (Fault Domains) ... 14
- Infrastructure Scalability ... 16
- Building an L3 Fabric for Virtual SAN with Brocade .. 18
- Network Automation & Orchestration ... 34
- Summary ... 38
- Acknowledgments .. 38
- Author .. 39
Introduction

The focus of this paper is to help virtualization, network, and storage implementation engineers, administrators, and architects simplify the deployment of a robust, high performant, scalable, and highly available, hyper-converged infrastructure (HCI) with VMware Virtual SAN and Brocade networking devices across routed network topologies.
VMware Virtual SAN Overview

VMware Virtual SAN is a scale-out enterprise-class software-defined storage solution for hyper-converged infrastructure (HCI). Virtual SAN is uniquely designed and it is embedded in the vSphere Hypervisor.

Virtual SAN supported architectures (hybrid and all-flash) are optimized for the use of flash devices to deliver the highest levels of performance and cost effectiveness to all vSphere virtualized infrastructures at a fraction of the cost of traditional storage array.

Virtual SAN is a scale out and distributed object storage platform that pools locally attached magnetic and flash-based storage devices and present them as a single storage resource in the form of a distributed virtual datastore to all participating members of a vSphere cluster. The abstraction provided by the distributed datastore facilitates the abstraction of the storage hardware and provides a hyper-converged storage solution optimized for vSphere and virtual machines.

Virtual SAN is a block storage solution that depends on IP Network connectivity in order to provide access to storage resources and storage management infrastructure services. Virtual SAN deployments are fully supported on switched (L2) and routed networks (L3).
Built on a distributed architecture where VMware vSphere hosts act as both storage resources and consumers, Virtual SAN requires that all participating hosts in a Virtual SAN cluster can communicate with each other and are members of the same VMware vSphere cluster.

A key advantage of using networks based on the IP protocol for Virtual SAN is the increased flexibility and scalability compared to other storage area network (SAN) technologies. Many of these were designed with a local area scope in mind, whereas IP has been designed from the ground up to support large (Internet) scale by interconnecting multiple separate network segments. Virtual SAN has been architected to use this when deployed on a L3 IP network where multiple individual Ethernet network segments are interconnected using IP routing.

This approach eliminates any scalability limitations of a Layer 2 (L2) Ethernet network architecture, and allows for greater flexibility when physically placing hosts participating in Virtual SAN clusters. No longer is it needed to reserve rack space and contiguous floor tiles in the data center for storage expansions.

Together with Virtual SAN Fault Domains a Virtual SAN cluster can be spread over many racks with redundant copies of data stored in different racks, hereby increasing resiliency.

Brocade Network Overview

A pioneer of mission-critical SAN fabrics and storage networking, Brocade has evolved into a leading provider of network technology for data centers of all types and sizes.

The Brocade VDX family of Ethernet switches has been designed to meet the requirements of modern applications and have a proven track record in deployments with stringent requirements. As the function of Virtual SAN is highly dependent on the underlying IP network, Brocade VDX switches are a natural fit for supporting VMware Virtual SAN.

Brocade VDX switches are available in both fixed form factor and modular chassis configurations, all based on the same enterprise grade network operating system with built-in hardware redundancy and in-service software upgrades.
In this paper we’re going to focus on scale out architecture with the Brocade VDX fixed form factor switches, specifically:

Brocade VDX6740

- 48x 10Gbit/s Ethernet SFP+ ports and 4x 40Gbit/s Ethernet QSFP ports
- Line rate switching and routing on all ports
- 1U form factor, dual power supplies, and front-to-back or back-to-front airflow
- 110W maximum power consumption

![Figure 1: Brocade VDX6740](attachment:image1)

Brocade VDX6940-36Q

- 36x 40Gbit/s Ethernet QSFP ports
- Line rate switching and routing on all ports
- 1U form factor, dual power supplies, and front-to-back or back-to-front airflow
- 282W maximum power consumption

![Figure 2: Brocade VDX6940-36Q](attachment:image2)
Brocade VDX switches can be deployed in support of a number of different network architectures depending on use case. Brocade delivers two data center fabric types with the VDX, the VCS Fabric which is a Layer 2 optimized architecture for up to 10,000 servers and an IP Fabric architecture which is a Layer 3 optimized architecture scaling to 500,000 servers. With the trend of IP Fabric deployments in larger enterprises, the focus of this paper is deployment of Virtual SAN with the Brocade IP Fabric architecture.

Brocade IP Fabrics use proven, open-standards protocols and deliver flexibility, performance, and resiliency while still being easy to manage. Based on an Internet standard BGP routing protocol design, a Brocade IP Fabric brings the best practices from mega-scale data centers to any data center.

At the center of the Brocade IP Fabric network architecture is a leaf-spine topology comprising of switches acting as either leafs or spines in the network topology. Several topologies are supported with leaf switches normally being deployed as either Top-of-Rack (ToR) or Middle-of-Row (MoR) devices. Servers connect to leaf switches which are deployed in pairs and inter-connected using the spine layer.

Using Border Gateway Protocol (BGP) as the routing protocol, switches in both the leaf and spine layer act as IP routers and forward traffic on L3 using Equal Cost Multi-Pathing (ECMP) leveraging all available physical links. Brocade VDX switches perform L3 IP routing with no performance compromise.

Figure 3: Leaf-Spine topology with external network connectivity
Proposed Network Architecture

In this paper only the Virtual SAN network is considered and not the application supporting networks and how these connect to external networks. It is however not possible to design application and Virtual SAN networks independently, as the network architecture inherently needs to be designed to support both traffic types optimally.

A Brocade IP Fabric architecture is fully capable of doing so and can simultaneously support the Virtual Machine application networks, any infrastructure network needed by VMware (vMotion etc.), and external network connectivity alongside the Virtual SAN network.

VMware NSX network virtualization is supported with integrated Hardware Virtual Tunnel End Point (Hardware VTEP) functionality with the option to cluster multiple VDX switches to form a single redundant and load-balanced Hardware VTEP. This is especially relevant for deployments where critical servers cannot be virtualized and will remain as physical servers.

Controller-less network virtualization is supported through BGP-EVPN overlays where leaf switches provide a clustered Logical VTEP.

Network virtualization is especially relevant for any networks requiring L2 transparency, like vMotion.

The Brocade IP Fabric leaf-spine topology can be expanded with more layers for even greater scalability by deploying an additional switch layer (super-spine) on top of the spine layer.

When evaluating network designs for Virtual SAN it is important to remember that the requirements for any network supporting storage traffic applies here as well. They include:

- Predictable data path through network
- Low latency and high bandwidth
- Redundant and resilient
- In service upgradable
- Scalable without disruption

In addition, it should be noted that since Virtual SAN is based on a distributed architecture with hosts being both storage initiators and
targets, the amount of east-west traffic between hosts in the network is much higher than in traditional SANs where many hosts (initiators) access the same target, causing a more north-south bound traffic flow.

The leaf-spine topology of the Brocade IP Fabric features a predictable east-west traffic path between all hosts (leaf-spine-leaf) with a low hop count. Hosts can be connected to dual leaf switches, which again are interconnected through multiple links to dual spine switches, hereby achieving full redundancy.

Should additional bandwidth be needed, more links between switches can be non-disruptively added and utilized. These properties are all highly desirable in a network supporting Virtual SAN traffic and makes the Brocade IP Fabric architecture a perfect fit.
Networking Protocols

IP Multicast

IP multicast is a network mechanism to efficiently send traffic from one or more sources to multiple destinations without having a source originate a copy to each destination.

Virtual SAN has been designed to utilize IP multicast for the process of hosts joining and leaving the cluster along with other intra-cluster communication services. Today, IP multicast is a foundational requirement for Virtual SAN.

IP multicast works by multicast groups where senders and receivers of a given data stream subscribe to the same multicast group. Each multicast group is identified by an IP address and the network must then ensure that traffic is distributed from the source to all receivers subscribed.

IP multicast functionality can be implemented in the network using a number of different protocols depending on requirements and network scale.

Figure 4: IP Multicast Communication Conceptual Diagram
Protocol-Independent Multicast (PIM)

Protocol-Independent Multicast (PIM) is a family of Layer 3 multicast routing protocols that provide different communication techniques for IP multicast traffic to reach receivers that are in different Layer 3 segments from the multicast groups sources.

The configuration of this solution PIM Dense Mode (PIM-DM) is utilized. There are different versions of PIM, each of which is best suited for different IP Multicast topologies. The main four versions of PIM are these:

- PIM Dense Mode (PIM-DM)
- PIM Sparse Mode (PIM-SM)
- Bidirectional PIM (BiPIM)
- PIM Source-Specific Multicast (PIM-SSM)

PIM Sparse Mode (PIM-SM) – Sparse Mode avoids the flooding issues of Dense Mode by assigning a root entity for the unidirectional Multicast Groups shortest-path tree called a rendezvous point (RP). The rendezvous point is selected in a per Multicast Group basis.

Sparse Mode scales fairly well for larger Layer 3 Networks and is best suited for one-to-many Multicast topologies. If the network only supports IGMP version 2, VMware recommends the use of PIM-SM for Virtual SAN deployments over Layer 3.
Network Configuration Considerations

When deploying Virtual SAN over a Brocade L3 IP Fabric the recommended IP multicast protocol is Protocol Independent Multicast - Sparse Mode (PIM-SM) which is well-known and scales well.

In a Brocade IP Fabric design for Virtual SAN over L3 the RP can be hosted by both leaf and spine switches, however it is recommended that the RP is hosted by switches in the spine layer. To achieve RP redundancy, the PIM Boot Strap Router (BSR) mechanism should be used which causes a selection of the RP from a list of candidates. Should the selected RP candidate fail BSR will eventually make sure a new RP is selected.

Host Connectivity

Virtual SAN traffic is transported over VMkernel network interfaces (vmk) connected to virtual switches which connect to the physical network through physical network interface cards (NIC or vmnic).

With dual host facing leaf switches available in the IP Fabric design each host participating in a Virtual SAN cluster should be equipped with a minimum of 2 NiCs supporting Virtual SAN traffic.

It is recommended to use an active-passive setup and implement Network IO Control (NIOC) to ensure critical services like Virtual SAN have enough bandwidth available (if IO slows down it is most likely that everything else does as well!). This can be done by allocating enough NIOC shares to Virtual SAN to have priority in a congestion situation. An example of share allocation is shown in next figure (if Fault Tolerance is implemented this should also be considered in the share allocation).
A way to load multiple physical adapters in this setup is to set an explicit failover order with different active uplinks among traffic types.

For the virtual switch it is recommended to implement the VMware vSphere Distributed Switch (vDS) and all Virtual SAN editions include license for this. The vDS facilitates large-scale deployments with advantages around management, advanced network features, and scalability that are all conducive to the benefits and values of Virtual SAN.

Brocade VDX switches support running multiple physical uplinks in active-active mode using Virtual Link Aggregation (vLAG) mode which can be used by VMware when uplinks are configured in LACP mode on the vDS.

A use-case of this is when each host is configured with 4 NICs of which 2 are used in active-passive mode for Virtual SAN, vMotion and Management traffic, while the other 2 NICs are configured in LACP active-active mode for the Virtual Machine application traffic.
Enterprise Infrastructure Availability and Resiliency

Network Device Connectivity

The Brocade IP Fabric architecture feature inherent availability and resiliency along with active-active data paths throughout the network.

- Each host is connected to 2 leaf switches
- Each leaf switch is connected to 2 or more spine switches
- Each spine switch is connected to multiple super-spine switches (in the case of a multi-stage design)

Together with uncompromised performance, Reliability, availability, and serviceability (RAS) features of each Brocade VDX switch provide redundancy within each network element.

- Full support for in-service software upgrades.
- Power supplies are redundant and hot-swappable
- Transceivers are hot-pluggable
- More bandwidth between switches can be added and utilized non-disruptively
- Early failure detection software features like Bidirectional Forwarding Detection (BFD)
Virtual SAN Accessibility and Availability (Fault Domains)

Virtual SAN supports configuring fault domains to protect hosts from rack or chassis failure when the Virtual SAN cluster spans across multiple racks or blade server chassis in a data center.

The fault domain feature instructs Virtual SAN to spread redundancy components across the servers in separate computing racks. In this way, the environment is protected against rack-level failure such as loss of power or connectivity.

Virtual SAN requires at least two fault domains, each of which consists of one or more hosts. Fault domain definitions must acknowledge physical hardware constructs that might represent a potential failure domain, for example, an individual computing rack enclosure.

If possible, use at least four fault domains. Three fault domains do not support certain data evacuation modes, and Virtual SAN is unable to reprotect data after a failure. In this case, you need an additional fault domain with capacity for rebuilding, which you cannot provide with only three fault domains.

If fault domains are enabled, Virtual SAN applies the active virtual machine storage policy to the fault domains instead of the individual
VMware Virtual SAN Routed Network Deployments with Brocade

hosts.

Calculate the number of fault domains in a cluster based on the Number of failures to tolerate attribute from the storage policies that you plan to assign to virtual machines.

- number of fault domains = 2 * number of failures to tolerate + 1

If a host is not a member of a fault domain, Virtual SAN interprets it as a stand-alone fault domain.

Consider a cluster that contains four server racks, each with two hosts. If the Number of failures to tolerate is set to one and fault domains are not enabled, Virtual SAN might store both replicas of an object with hosts in the same rack enclosure. In this way, applications might be exposed to a potential data loss on a rack-level failure.

When configuring hosts that could potentially fail together into separate fault domains, Virtual SAN ensures that each protection component (replicas and witnesses) is placed in a separate fault domain.

When adding hosts and capacity, the existing fault domain configuration can be used or new ones can define fault domains.

For balanced storage load and fault tolerance when using fault domains, consider the following guidelines:

- Provide enough fault domains to satisfy the Number of failures to tolerate that are configured in the storage policies.
- Define at least three fault domains. Define a minimum of four domains for best protection.
- Assign the same number of hosts to each fault domain. Use hosts that have uniform configurations. Dedicate one fault domain of free capacity for rebuilding data after a failure, if possible.
Infrastructure Scalability

Brocade

Using Brocade VDX6740 leaf switches and Brocade VDX6940-36Q spines with each leaf connecting to the spine layer with 4x 40Gbit/s a maximum scalability of 1,728 10Gbit/s server facing ports over 18 leaf switch pairs is achievable with an oversubscription of 3:1 between leaf and spine layer.

Assuming each host has 2 10Gbit/s NICs this allows for 864 hosts. Also assuming each leaf switch pair is configured as a Virtual SAN Fault Domain, and with the current version (6.2) of Virtual SAN supporting a maximum of 3 Failures to Tolerate, the most resilient architecture for a Virtual SAN cluster is obtained by spreading hosts over 7 pairs of leaf switches (2x3+1).

If each pair of leaf switches is deployed in a rack this allows for 3 racks to go offline while still maintaining proper functioning of the Virtual SAN cluster!

If even greater scalability is desired the IP Fabric architecture can expand using modular switch models or super-spines. Using Brocade VDX6940-36Q as both spines and super-spines the number of 10Gbit/s host ports increase to 31,104. An additional L2 switch aggregation layer below the leaf switches is another way to scale by expanding each L2 segment.
Virtual SAN Scalability

Virtual SAN delivers enterprise-class scalability, from a compute perspective, Virtual SAN’s scale-out architecture is designed to scale up to 64 nodes per cluster. Storage capacity can be scaled linearly for capacity, performance, and availability.

Virtual SAN 6.2 Enterprise-Class Scalability

<table>
<thead>
<tr>
<th>Hosts per Cluster</th>
<th>64</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMs per Host</td>
<td>200</td>
</tr>
<tr>
<td>IOPS per Host</td>
<td>90K</td>
</tr>
<tr>
<td>Snapshot depth per VM</td>
<td>32</td>
</tr>
<tr>
<td>Virtual Disk size</td>
<td>62TB</td>
</tr>
<tr>
<td>Datastore Capacity</td>
<td>~ 8PT*</td>
</tr>
</tbody>
</table>

The datastore capacity scalability in Virtual SAN is dictated by the number of disk groups, number of disks, and the size of the locally attached storage capacity devices.
Building an L3 Fabric for Virtual SAN with Brocade

In this example a Brocade IP Fabric consisting of a 2-layer spine-leaf architecture is considered. 5 pairs of ToR leaf switches illustrate a setup comprising 5 individual racks with Virtual SAN hosts, all interconnected and participating in the same Virtual SAN cluster.

In each rack 2 Virtual SAN hosts are present and the 2 ToR leaf switches are joined in a Brocade vLAG pair to form a virtual switch in the rack for redundancy and simplified management.

Leaf switches are connected via L3 using BGP to dual spine switches using multiple links. Configuring each rack as a Virtual SAN Fault Domain would provide enough resiliency to sustain 2 rack failures (2x2+1). It should be noted that this design easily can accommodate many more racks, hosts, and multiple Virtual SAN clusters.

Figure 10: Example Physical Network Design

Rack A, B, and C 3 are deployed in the same physical data center room while rack D and E are deployed in a different room.
Switches in the leaf layer are Brocade VDX6740 while the spine switches are Brocade VDX6940-36Q. Configurations are based on all switches running Brocade Network Operating System (NOS) version 7.1.0.

Hosts and switches have already been cabled, links established, and management interfaces configured.

We start by configuring the L2 part of the leaf switch pair in each rack and then move on to the L3 parts followed by the L3 configuration of the spines. In the end we configure PIM-SM multicast.

Leaf switch pairs have already been configured in vLAG pair mode. Configuration details for the L2 segment where hosts have their vmk interface for Virtual SAN attached follow in below table:

<table>
<thead>
<tr>
<th>Rack ID</th>
<th>A</th>
<th>B</th>
<th>C</th>
<th>D</th>
<th>E</th>
</tr>
</thead>
<tbody>
<tr>
<td>Servers</td>
<td>esxi-1, esxi-2</td>
<td>esxi-3, esxi-4</td>
<td>esxi-5, esxi-6</td>
<td>esxi-7, esxi-8</td>
<td>esxi-9, esxi-10</td>
</tr>
<tr>
<td>Leaf Switches</td>
<td>Leaf-1, Leaf-2</td>
<td>Leaf-3, Leaf-4</td>
<td>Leaf-5, Leaf-6</td>
<td>Leaf-7, Leaf-8</td>
<td>Leaf-9, Leaf-10</td>
</tr>
<tr>
<td>VSAN L2 VLAN ID</td>
<td>101</td>
<td>102</td>
<td>103</td>
<td>104</td>
<td>105</td>
</tr>
<tr>
<td>VSAN L2 Subnet</td>
<td>10.0.1.0/24</td>
<td>10.0.2.0/24</td>
<td>10.0.3.0/24</td>
<td>10.0.4.0/24</td>
<td>10.0.5.0/24</td>
</tr>
<tr>
<td>VSAN L2 Gateway</td>
<td>10.0.1.1</td>
<td>10.0.2.1</td>
<td>10.0.3.1</td>
<td>10.0.4.1</td>
<td>10.0.5.1</td>
</tr>
<tr>
<td>VSAN L2 PIM interface</td>
<td>10.0.1.2 (Leaf-1)</td>
<td>10.0.2.2 (Leaf-3)</td>
<td>10.0.3.2 (Leaf-5)</td>
<td>10.0.4.2 (Leaf-7)</td>
<td>10.0.5.2 (Leaf-9)</td>
</tr>
<tr>
<td></td>
<td>10.0.1.3 (Leaf-2)</td>
<td>10.0.2.3 (Leaf-4)</td>
<td>10.0.3.3 (Leaf-6)</td>
<td>10.0.4.3 (Leaf-8)</td>
<td>10.0.5.3 (Leaf-10)</td>
</tr>
<tr>
<td>VSAN Host vmk IP</td>
<td>10.0.1.10/24 (esxi-1)</td>
<td>10.0.2.10/24 (esxi-3)</td>
<td>10.0.3.10/24 (esxi-5)</td>
<td>10.0.4.10/24 (esxi-7)</td>
<td>10.0.5.10/24 (esxi-9)</td>
</tr>
<tr>
<td></td>
<td>10.0.1.20/24 (esxi-2)</td>
<td>10.0.2.20/24 (esxi-4)</td>
<td>10.0.3.20/24 (esxi-6)</td>
<td>10.0.4.20/24 (esxi-8)</td>
<td>10.0.5.20/24 (esxi-10)</td>
</tr>
</tbody>
</table>

Table 1: L2 Network Configuration Details

Starting with rack A we establish a terminal session with the Leaf-1 switch to configure the L2 part. Start by verifying the vLAG pair:

```
Leaf-1# show vcs
Config Mode     : Distributed
VCS Mode        : Logical Chassis
VCS ID          : 1
```
VMware Virtual SAN Routed Network Deployments with Brocade

VCS GUID : 1e186ac5-cf94-4ed1-921c-7b86bb093684
Total Number of Nodes : 2

<table>
<thead>
<tr>
<th>Rbridge-Id</th>
<th>WWN</th>
<th>Management IP</th>
<th>VCS</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>>10:00:50:EB:1A:77:EF:98*</td>
<td>10.254.4.100</td>
<td></td>
</tr>
<tr>
<td>1</td>
<td>Online</td>
<td>Leaf-1</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10:00:50:EB:1A:77:F6:A4</td>
<td>10.254.4.102</td>
<td></td>
</tr>
<tr>
<td>2</td>
<td>Online</td>
<td>Leaf-2</td>
<td></td>
</tr>
</tbody>
</table>

Each pair of leaf switches (also called RBridges) are configured from a single entry-point using the virtual IP for the vLAG pair which in this example is hosted by Leaf-1.

Now we configure the 10Gbit/s ports where host NICs attach as VLAN trunk ports and then define the gateway L3 interface on VLAN101 with IP 10.0.1.1/24 to reach the rest of the IP Fabric.

We use a Virtual Ethernet (ve) interface with the Brocade Fabric Virtual Gateway feature enabled when defining the L3 gateway interface. Fabric Virtual Gateway provides a distributed gateway that can span multiple switches in the vLAG pair while only requiring a single IP address.

```
Leaf-1(config)# router fabric-virtual-gateway
Leaf-1(config-router-fabric-virtual-gateway)# address-family ipv4
Leaf-1(config-address-family-ipv4)# enable
Leaf-1(config-address-family-ipv4)# exit
Leaf-1(config-router-fabric-virtual-gateway)# address-family ipv6
Leaf-1(config-address-family-ipv6)# no enable
Leaf-1(config-address-family-ipv6)# exit
Leaf-1(config-router-fabric-virtual-gateway)# exit

Leaf-1(config)# interface vlan 101
Leaf-1(config-Vlan-101)# exit

Leaf-1(config)# interface ve 101
```
VMware Virtual SAN Routed Network Deployments with Brocade

Leaf-1(config-Ve-101)# attach rbridge-id add 1,2
Leaf-1(config-Ve-101)# no shutdown
Leaf-1(config-Ve-101)# ip fabric-virtual-gateway
Leaf-1(config-ip-fabric-virtual-gw)# gateway-address 10.0.1.1/24
Leaf-1(config-ip-fabric-virtual-gw)# exit
Leaf-1(config-Ve-101)# exit

Note that we obtained the RBridge IDs of the 2 leaf switches from the “show vcs” command earlier.

Host esxi-1 is connected to 10Gbit/s port TenGigabitEthernet 20 on both Leaf-1 and Leaf-2 and host esxi-2 to port TenGigabitEthernet 21.

As we plan to use these host uplinks for not only Virtual SAN but also other traffic types using the VMware vDS virtual switch we configure the ports as VLAN trunks.

Leaf-1(config)# interface TenGigabitEthernet 1/0/20-21
Leaf-1(conf-if-te-1/0/20-21)# switchport
Leaf-1(conf-if-te-1/0/20-21)# switchport mode trunk
Leaf-1(conf-if-te-1/0/20-21)# switchport trunk allowed vlan all
Leaf-1(conf-if-te-1/0/20-21)# no shut
Leaf-1(conf-if-te-1/0/20-21)# exit
Leaf-1(config)# interface TenGigabitEthernet 2/0/20-21
Leaf-1(conf-if-te-2/0/20-21)# switchport
Leaf-1(conf-if-te-2/0/20-21)# switchport mode trunk
Leaf-1(conf-if-te-2/0/20-21)# switchport trunk allowed vlan all
Leaf-1(conf-if-te-2/0/20-21)# no shut
Leaf-1(conf-if-te-2/0/20-21)# end

For a production deployment it should be evaluated which VLANs are allowed on the trunk ports in order to comply with security and other policies.

Note how ports are addressed on the different switches with “x/0/y” signifying RBridge ID (“x/”), slot number (“0/”), and port number (“y”). The other Leaf switch pairs are configured in a similar way using the
corresponding VLAN ID, gateway IP, etc. from Table 1.

We also show configuration of rack D with Leaf-7 and Leaf-8 where host esxi-7 is connected to port TenGigabitEthernet 25 on both switches and host esxi-8 to port TenGigabitEthernet 24.

Leaf-7# show vcs
Config Mode : Distributed
VCS Mode : Logical Chassis
VCS ID : 1
VCS GUID : 8518b903-5713-40d0-85bd-a26f940c25a4
Total Number of Nodes : 2

<table>
<thead>
<tr>
<th>Rbridge-Id</th>
<th>WWN</th>
<th>Management IP</th>
<th>VCS Status</th>
<th>HostName</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>>10:00:50:EB:1A:2E:A7:0D*</td>
<td>10.254.10.190</td>
<td>Online</td>
<td>Leaf-7</td>
</tr>
<tr>
<td>2</td>
<td>10:00:50:EB:1A:36:83:0A</td>
<td>10.254.11.25</td>
<td>Online</td>
<td>Leaf-8</td>
</tr>
</tbody>
</table>

Leaf-7(config)# router fabric-virtual-gateway
Leaf-7(config-router-fabric-virtual-gateway)# address-family ipv4
Leaf-7(config-address-family-ipv4)# enable
Leaf-7(config-address-family-ipv4)# exit
Leaf-7(config-router-fabric-virtual-gateway)# address-family ipv6
Leaf-7(config-address-family-ipv6)# no enable
Leaf-7(config-address-family-ipv6)# exit
Leaf-7(config-router-fabric-virtual-gateway)# exit

Leaf-7(config)# interface vlan 104
Leaf-7(config-Vlan-101)# exit

Leaf-7(config)# interface ve 104
Leaf-7(config-Ve-101)# attach rbridge-id add 1,2
VMware Virtual SAN Routed Network Deployments with Brocade

Leaf-7(config-Ve-101)# no shutdown
Leaf-7(config-Ve-101)# ip fabric-virtual-gateway
Leaf-7(config-ip-fabric-virtual-gw)# gateway-address 10.0.4.1/24
Leaf-7(config-ip-fabric-virtual-gw)# exit
Leaf-7(config-Ve-101)# exit
Leaf-7(config)# interface TenGigabitEthernet 1/0/24-25
Leaf-7(conf-if-te-1/0/24-25)# switchport
Leaf-7(conf-if-te-1/0/24-25)# switchport mode trunk
Leaf-7(conf-if-te-1/0/24-25)# switchport trunk allowed vlan all
Leaf-7(conf-if-te-1/0/24-25)# no shut
Leaf-7(conf-if-te-1/0/24-25)# exit
Leaf-7(config)# interface TenGigabitEthernet 2/0/24-25
Leaf-7(conf-if-te-2/0/24-25)# switchport
Leaf-7(conf-if-te-2/0/24-25)# switchport mode trunk
Leaf-7(conf-if-te-2/0/24-25)# switchport trunk allowed vlan all
Leaf-7(conf-if-te-2/0/24-25)# no shut
Leaf-7(conf-if-te-2/0/24-25)# end

Having the L2 segments and L3 gateway interfaces set up, we progress to the leaf switch L3 configuration using information from Table 2.

BGP identifies individual networks using a designated Autonomous System (AS) number which must be unique throughout the IP Fabric. A leaf switch pair share AS and so does the spine switches.

<table>
<thead>
<tr>
<th>BGP Details:</th>
<th>BGP IP:</th>
<th>BGP Source Interface ID:</th>
<th>ASN ID:</th>
</tr>
</thead>
<tbody>
<tr>
<td>Spine-1</td>
<td>192.168.200.250/32</td>
<td>Loopback 100</td>
<td>65000</td>
</tr>
<tr>
<td>Spine-2</td>
<td>192.168.200.249/32</td>
<td>Loopback 100</td>
<td>65000</td>
</tr>
<tr>
<td>Leaf-1</td>
<td>192.168.200.252/32</td>
<td>Loopback 100</td>
<td>65001</td>
</tr>
<tr>
<td>Leaf-2</td>
<td>192.168.200.253/32</td>
<td>Loopback 100</td>
<td>65001</td>
</tr>
<tr>
<td>Leaf-3</td>
<td>192.168.200.247/32</td>
<td>Loopback 100</td>
<td>65002</td>
</tr>
<tr>
<td>Leaf-4</td>
<td>192.168.200.248/32</td>
<td>Loopback 100</td>
<td>65002</td>
</tr>
<tr>
<td>Leaf-5</td>
<td>192.168.200.241/32</td>
<td>Loopback 100</td>
<td>65004</td>
</tr>
</tbody>
</table>
Table 2: L3 Network Configuration Details

<table>
<thead>
<tr>
<th>Leaf</th>
<th>IP Address</th>
<th>Loopback</th>
<th>AS</th>
</tr>
</thead>
<tbody>
<tr>
<td>Leaf-6</td>
<td>192.168.200.242/32</td>
<td>100</td>
<td>65004</td>
</tr>
<tr>
<td>Leaf-7</td>
<td>192.168.200.245/32</td>
<td>100</td>
<td>65005</td>
</tr>
<tr>
<td>Leaf-8</td>
<td>192.168.200.246/32</td>
<td>100</td>
<td>65005</td>
</tr>
<tr>
<td>Leaf-9</td>
<td>192.168.200.243/32</td>
<td>100</td>
<td>65006</td>
</tr>
<tr>
<td>Leaf-10</td>
<td>192.168.200.244/32</td>
<td>100</td>
<td>65006</td>
</tr>
</tbody>
</table>

Again we start with the rack A leaf switches

Figure 11: L3 Network Configuration for Rack Leaf and Spine Switches
Leaf-1(config)# rbridge-id 1
Leaf-1(config-rbridge-id-1)# router bgp
Leaf-1(config-bgp-router)# local-as 65001
Leaf-1(config-bgp-router)# neighbor 192.168.200.249 remote-as 65000
Leaf-1(config-bgp-router)# neighbor 192.168.200.249 ebgp-multihop 2
Leaf-1(config-bgp-router)# neighbor 192.168.200.250 remote-as 65000
Leaf-1(config-bgp-router)# neighbor 192.168.200.250 ebgp-multihop 2
Leaf-1(config-bgp-router)# address-family ipv4 unicast
Leaf-1(config-bgp-ipv4u)# redistribute connected
Leaf-1(config-bgp-ipv4u)# neighbor 192.168.200.249 allowas-in 1
Leaf-1(config-bgp-ipv4u)# neighbor 192.168.200.250 allowas-in 1
Leaf-1(config-bgp-ipv4u)# maximum-paths 8
Leaf-1(config-bgp-ipv4u)# graceful-restart
Leaf-1(config-bgp-ipv4u)# exit
Leaf-1(config-bgp-router)# exit

We use the “allowas-in” option to make sure that routes between leaf switches in a pair are distributed through the spines and “graceful-restart” to help ensure no topology change occur should a restart occur.

To carry BGP traffic we use an unnumbered IP interface which is attached to the ports connected to spine switches. As donor interface we use a loopback interface. Using an unnumbered IP interface conserves IP address space and makes the configuration simpler.

Leaf-1(config-rbridge-id-1)# interface Loopback 100
Leaf-1(config-Loopback-100)# ip address 192.168.200.252/32
Leaf-1(config-Loopback-100)# no shutdown
Leaf-1(config-Loopback-100)# exit
Leaf-1(config)# interface FortyGigabitEthernet 1/0/49-52
Leaf-1(conf-if-fo-1/0/49-52)# ip unnumbered loopback 100
Leaf-1(conf-if-fo-1/0/49-52)# no shutdown
Leaf-1(conf-if-fo-1/0/49-52)# exit
And similarly on Leaf-2 which is done from the existing Leaf-1 session:

Leaf-1(config)# rbridge-id 2
Leaf-1(config-rbridge-id-2)# router bgp
Leaf-1(config-bgp-router)# local-as 65001
Leaf-1(config-bgp-router)# neighbor 192.168.200.249 remote-as 65000
Leaf-1(config-bgp-router)# neighbor 192.168.200.249 ebgp-multihop 2
Leaf-1(config-bgp-router)# neighbor 192.168.200.250 remote-as 65000
Leaf-1(config-bgp-router)# neighbor 192.168.200.250 ebgp-multihop 2
Leaf-1(config-bgp-router)# address-family ipv4 unicast
Leaf-1(config-bgp-ipv4u)# redistribute connected
Leaf-1(config-bgp-ipv4u)# neighbor 192.168.200.249 allowas-in 1
Leaf-1(config-bgp-ipv4u)# neighbor 192.168.200.250 allowas-in 1
Leaf-1(config-bgp-ipv4u)# maximum-paths 8
Leaf-1(config-bgp-ipv4u)# graceful-restart
Leaf-1(config-bgp-ipv4u)# exit
Leaf-1(config-bgp-router)# exit

Leaf-1(config-rbridge-id-2)# interface Loopback 100
Leaf-1(config-Loopback-100)# ip address 192.168.200.253/32
Leaf-1(config-Loopback-100)# no shutdown
Leaf-1(config-Loopback-100)# exit
Leaf-1(config)# interface FortyGigabitEthernet 2/0/49-52
Leaf-1(conf-if-fo-2/0/49-52)# ip unnumbered loopback 100
Leaf-1(conf-if-fo-2/0/49-52)# no shutdown
Leaf-1(conf-if-fo-2/0/49-52)# end

Leaf switches in rack B-E are configured in a similar way using information from Table 2.
We now proceed to configuring the 2 spine switches where no L2 configuration is needed as they purely act as L3 routers. Contrary to the leaf switch pairs the spines are not interconnected (and hence not in vLAG pair mode) as there is no need for L2 redundancy and load-balancing. They must therefore be configured individually using separate sessions. RBridge ID for both spine switches is 1 and using the information in Table 2 for AS numbers and corresponding IP addresses we derive the configuration:

```
Spine-1(config)# rbridge-id 1
Spine-1(config-rbridge-id-1)# router bgp
Spine-1(config-bgp-router)# local-as 65000
Spine-1(config-bgp-router)# neighbor 192.168.200.243 remote-as 65006
Spine-1(config-bgp-router)# neighbor 192.168.200.243 ebgp-multihop 2
Spine-1(config-bgp-router)# neighbor 192.168.200.244 remote-as 65006
Spine-1(config-bgp-router)# neighbor 192.168.200.244 ebgp-multihop 2
Spine-1(config-bgp-router)# neighbor 192.168.200.245 remote-as 65005
Spine-1(config-bgp-router)# neighbor 192.168.200.245 ebgp-multihop 2
Spine-1(config-bgp-router)# neighbor 192.168.200.246 remote-as 65005
Spine-1(config-bgp-router)# neighbor 192.168.200.246 ebgp-multihop 2
Spine-1(config-bgp-router)# neighbor 192.168.200.241 remote-as 65004
Spine-1(config-bgp-router)# neighbor 192.168.200.241 ebgp-multihop 2
Spine-1(config-bgp-router)# neighbor 192.168.200.242 remote-as 65004
Spine-1(config-bgp-router)# neighbor 192.168.200.242 ebgp-multihop 2
Spine-1(config-bgp-router)# neighbor 192.168.200.247 remote-as 65002
Spine-1(config-bgp-router)# neighbor 192.168.200.247 ebgp-multihop 2
Spine-1(config-bgp-router)# neighbor 192.168.200.248 remote-as 65002
Spine-1(config-bgp-router)# neighbor 192.168.200.248 ebgp-multihop 2
Spine-1(config-bgp-router)# neighbor 192.168.200.252 remote-as 65001
Spine-1(config-bgp-router)# neighbor 192.168.200.252 ebgp-multihop 2
Spine-1(config-bgp-router)# neighbor 192.168.200.253 remote-as 65001
```
VMware Virtual SAN Routed Network Deployments with Brocade

Spine-1(config-bgp-router)# neighbor 192.168.200.253 ebgp-multihop 2
Spine-1(config-bgp-router)# address-family ipv4 unicast
Spine-1(config-bgp-ipv4u)# redistribute connected
Spine-1(config-bgp-ipv4u)# maximum-paths 8
Spine-1(config-bgp-ipv4u)# graceful-restart
Spine-1(config-bgp-ipv4u)# exit
Spine-1(config-bgp-router)# exit

Like the leaf switches we use an un-numbered IP loopback interface to carry BGP traffic and attach it to the leaf facing ports. Each leaf switch connects to each spine using two 40Gbit/s ports for a total of 20 ports per spine switch. These are labeled FortyGigabitEthernet 1/0/1 through 20 on both spines.

Spine-1(config-rbridge-id-1)# interface Loopback 100
Spine-1(config-Loopback-100)# ip address 192.168.200.250/32
Spine-1(config-Loopback-100)# no shutdown
Spine-1(config-Loopback-100)# exit
Spine-1(config-rbridge-id-1)# exit

Spine-1(config)# interface FortyGigabitEthernet 1/0/1-20
Spine-1(config-if-fo-1/0/1-20)# ip unnumbered loopback 100
Spine-1(config-if-fo-1/0/1-20)# no shutdown
Spine-1(config-if-fo-1/0/1-20)# end

Spine-2 configuration is very similar to Spine-1 with only the loopback IP address changed:

Spine-2(config)# router bgp
Spine-2(config-router)# local-as 65000
Spine-2(config-router)# neighbor 192.168.200.243 remote-as 65006
Spine-2(config-bgp-router)# neighbor 192.168.200.243 ebgp-multihop 2
Spine-2(config-bgp-router)# neighbor 192.168.200.244 remote-as 65006
Spine-2(config-bgp-router)# neighbor 192.168.200.244 ebgp-multihop 2
Spine-2(config-bgp-router)# neighbor 192.168.200.245 remote-as 65005
Spine-2(config-bgp-router)# neighbor 192.168.200.245 ebgp-multihop 2
Spine-2(config-bgp-router)# neighbor 192.168.200.246 remote-as 65005
Spine-2(config-bgp-router)# neighbor 192.168.200.246 ebgp-multihop 2
Spine-2(config-bgp-router)# neighbor 192.168.200.241 remote-as 65004
Spine-2(config-bgp-router)# neighbor 192.168.200.241 ebgp-multihop 2
Spine-2(config-bgp-router)# neighbor 192.168.200.242 remote-as 65004
Spine-2(config-bgp-router)# neighbor 192.168.200.242 ebgp-multihop 2
Spine-2(config-bgp-router)# neighbor 192.168.200.247 remote-as 65002
Spine-2(config-bgp-router)# neighbor 192.168.200.247 ebgp-multihop 2
Spine-2(config-bgp-router)# neighbor 192.168.200.248 remote-as 65002
Spine-2(config-bgp-router)# neighbor 192.168.200.248 ebgp-multihop 2
Spine-2(config-bgp-router)# neighbor 192.168.200.252 remote-as 65001
Spine-2(config-bgp-router)# neighbor 192.168.200.252 ebgp-multihop 2
Spine-2(config-bgp-router)# neighbor 192.168.200.253 remote-as 65001
Spine-2(config-bgp-router)# neighbor 192.168.200.253 ebgp-multihop 2
Spine-2(config-bgp-router)# address-family ipv4 unicast
Spine-2(config-bgp-ipv4u)# redistribute connected
Spine-2(config-bgp-ipv4u)# maximum-paths 8
Spine-2(config-bgp-ipv4u)# graceful-restart
Spine-2(config-bgp-ipv4u)# exit
Spine-2(config-bgp-router)# exit

Spine-2(config-rbridge-id-1)# interface Loopback 100
Spine-2(config-Loopback-100)# ip address 192.168.200.249/32
Spine-2(config-Loopback-100)# no shutdown
As the last step we configure PIM-SM multicast. An RP formed using 2 RP candidates with BSR for redundancy has already been set up in the network with IP address 192.168.0.2 and we now configure this on the leaf switches using rack A (Leaf-1 and Leaf-2) as an example. IGMP snooping is also enabled on the L2 VLANs.

PIM-SM is enabled at both the switch (RBridge) level and on the interfaces connecting to the spines.

A ve interface is defined per Virtual SAN VLAN on each leaf switch to host the PIM-SM instance.

For Leaf-1:
Leaf-1(config)# rbridge-id 1
Leaf-1(config-rbridge-id-1)# router pim
Leaf-1(config-pim-router)# rp-address 192.168.0.2
Leaf-1(config-pim-router)# exit
Leaf-1(config-rbridge-id-1)# int ve 101
Leaf-1(config-rbridge-id-1)# ip address 10.0.1.2/24
Leaf-1(config-rbridge-id-1)# ip pim-sparse
Leaf-1(config-rbridge-id-1)# no shutdown
Leaf-1(config-rbridge-id-1)# exit
Leaf-1(config)# interface FortyGigabitEthernet 1/0/49-52
Leaf-1(config-if-fo-1/0/49-52)# ip pim-sparse
Leaf-1(config-if-fo-1/0/49-52)# exit

And Leaf-2:
Leaf-1(config)# rbridge-id 2
Leaf-1(config-rbridge-id-2)# router pim
Leaf-1(config-pim-router)# rp-address 192.168.0.2

Leaf-2(config)# interface FortyGigabitEthernet 1/0/20
Leaf-2(conf-if-fo-1/0/20)# ip unnumbered loopback 100
Leaf-2(conf-if-fo-1/0/20)# no shutdown
Leaf-2(conf-if-fo-1/0/20)# end

Leaf-1(config)# interface FortyGigabitEthernet 1/0/20
Leaf-1(conf-if-fo-1/0/20)# ip unnumbered loopback 100
Leaf-1(conf-if-fo-1/0/20)# no shutdown
Leaf-1(conf-if-fo-1/0/20)# end
VMware Virtual SAN Routed Network Deployments with Brocade

Leaf-1(config-pim-router)# exit
Leaf-1(config-rbridge-id-2)# int ve 101
Leaf-1(config-rbridge-id-2)# ip address 10.0.1.3/24
Leaf-1(config-rbridge-id-2)# ip pim-sparse
Leaf-1(config-rbridge-id-2)# no shutdown
Leaf-1(config-rbridge-id-2)# exit
Leaf-1(config)# interface FortyGigabitEthernet 2/0/49-52
Leaf-1(conf-if-fo-2/0/49-52)# ip pim-sparse
Leaf-1(conf-if-fo-2/0/49-52)# exit

IGMP Snooping enable:
Leaf-1(config)# ip igmp snooping enable
Leaf-1(config)# int vlan 101
Leaf-1(config-Vlan-101)# ip igmp snooping enable
Leaf-1(config-Vlan-101)# end

PIM-SM is enabled on the other leaf switches in rack B-E in a similar way (refer to Table 1 for details). Rack D is shown below:

Leaf-7(config)# rbridge-id 1
Leaf-7(config-rbridge-id-1)# router pim
Leaf-7(config-pim-router)# rp-address 192.168.0.2
Leaf-7(config-pim-router)# exit
Leaf-7(config-rbridge-id-1)# int ve 104
Leaf-7(config-rbridge-id-1)# ip address 10.0.4.2/24
Leaf-7(config-rbridge-id-1)# ip pim-sparse
Leaf-7(config-rbridge-id-1)# no shutdown
Leaf-7(config-rbridge-id-1)# exit
Leaf-7(config)# interface FortyGigabitEthernet 1/0/49-52
Leaf-7(conf-if-fo-1/0/49-52)# ip pim-sparse
Leaf-7(conf-if-fo-1/0/49-52)# exit
Leaf-7(config)# rbridge-id 2
Leaf-7(config-rbridge-id-2)# router pim
Leaf-7(config-pim-router)# rp-address 192.168.0.2
Leaf-7(config-pim-router)# exit
Leaf-7(config-rbridge-id-2)# int ve 104
Leaf-7(config-rbridge-id-2)# ip address 10.0.4.3/24
Leaf-7(config-rbridge-id-2)# ip pim-sparse
Leaf-7(config-rbridge-id-2)# no shutdown
Leaf-7(config-rbridge-id-2)# exit
Leaf-7(config)# interface FortyGigabitEthernet 2/0/49-52
Leaf-7(config-if-fo-2/0/49-52)# ip pim-sparse

Leaf-7(config)# ip igmp snooping enable
Leaf-7(config)# int vlan 104
Leaf-7(config-Vlan-104)# ip igmp snooping enable
Leaf-7(config-Vlan-104)# end

On the spine switches we enable PIM-SM as well.

Spine-1:
Spine-1(config)# rbridge-id 1
Spine-1(config-rbridge-id-1)# router pim
Spine-1(config-pim-router)# rp-address 192.168.0.2
Spine-1(config-pim-router)# exit
Spine-1(config-rbridge-id-1)# exit
Spine-1(config)# interface FortyGigabitEthernet 1/0/1-20
Spine-1(config-if-fo-1/0/1-20)# ip pim-sparse
Spine-1(config-if-fo-1/0/1-20)# end
Spine-2:
Spine-2(config)# rbridge-id 1
Spine-2(config-rbridge-id-1)# router pim
Spine-2(config-pim-router)# rp-address 192.168.0.2
Spine-2(config-pim-router)# exit
Spine-2(config-rbridge-id-1)# exit
Spine-2(config)# interface FortyGigabitEthernet 1/0/1-20
Spine-2(conf-if-fo-1/0/1-20)# ip pim-sparse
Spine-2(conf-if-fo-1/0/1-20)# end

This concludes the switch configurations and the IP Fabric is ready for the Virtual SAN cluster to be configured!
Network Automation & Orchestration

To ensure configuration consistency, design adherence, and to ease manual management tasks, the process of configuring the Brocade IP Fabric for VMware Virtual SAN can be automated using the Brocade Workflow Composer (BWC).

Based on workflows grouping the sequence of tasks through which a configuration change is implemented, Brocade Workflow Composer provides a software-driven network automation platform integrating cross-domain everyday tasks.

Based on a micro-services architecture and Powered by StackStorm, an innovator in event-driven, DevOps-style, cross-domain automation, Brocade Workflow Composer provides nearly 2000 points of integration with popular platforms and technologies.

Workflows are composed using 3 key technologies working hand-in-hand.

- Sensors: Listens for specific events through integrating with infrastructure and applications using APIs
- Actions: Executes commands through integrating with infrastructure and applications using APIs
- Rules: Uses IFTTT (if-then-this-that) logic to determine what actions to perform based on input from Sensors
Infrastructure Service Provisioning

In this example is shown how Brocade Workflow Composer (BWC) can be used to automate the provisioning and validation phases of the network lifecycle – in this case by adding a new Brocade VDX leaf switch into an existing Brocade IP Fabric.

- ZTP process on the new Brocade VDX switch registers the switch to the inventory service through the registration sensor
- Registration triggers the “IP Fabric Leaf” Workflow
- Workflow engine models the IP Fabric
- BWC walks through the steps in the workflow
- Switch configuration is executed through the appropriate “Action”
- IP Fabric provision complete
- “IP Fabric Validation” Workflow is triggered

Figure 12: Automation Workflow
Troubleshooting & Remediation

In this example BWC is used to troubleshoot a failing eBGP link between leaf and spine switches and afterwards remediate the problem.

An immediate value of doing this using an automated and programmatic is the time elapsed from failure occurrence until resolution (<5 minutes) together with the assurance that the network is restored according to intended design.

1. Switch link goes down (!)
2. Switch sends syslog message
3. BWC syslog sensor matches error message
4. BWC sensor triggers BGP troubleshooting workflow
5. BWC action extracts information (switch ip, switch peer ip address, egress interface)
6. BWC Action logs into switch and execute workflow to determine serve and interface state
7. If interface is down BWC Action tries to restart
8. BWC Action creates helpdesk ticket with outputs from above
9. BWC initiates an Alert workflow if interface could not be restarted
 o Include Helpdesk ID and URL
 o Post message to eg. Slack for Network Ops team visibility
 o Launch incident to PagerDuty to notify Operator on duty
Summary

VMware Virtual SAN is the next evolution in Storage Virtualization. Virtual SAN implementations utilize the already existing IP Network infrastructure to maximize return on investment while reducing OPEX.

From a deployment perspective, the Virtual SAN network stack is flexible and supported over Layer 2 and Layer 3 network topologies.

While Virtual SAN implementations over Layer 2 network topologies present the least amount of network complexity to implement and simplest option to manage and maintain, the ability of Virtual SAN to natively function in a massively scalable L3 topology shows the flexibility and power of the solution.

Either way, VMware Virtual SAN deployments can be performed on Layer 2 as well as Layer 3 networking topologies right out-of-the box.

Acknowledgments

We would like to thank Christos Karamanolis, Fellow and CTO of the Storage and Availability Business Unit at VMware, Ken Werneburg, Manager of the Storage and Availability Technical marketing team at VMware for reviewing this paper.
Author

Rawlinson Rivera is a Principal Architect in the Office of the CTO for the Storage and Availability Business Unit at VMware, Inc. He specializes in cloud enterprise architectures, and Hyper-Converged Infrastructures (HCI).

Primarily focused on Software-Defined Storage products and technologies such as Virtual SAN, vSphere Virtual Volumes, as well as storage related solutions for OpenStack and Cloud-Native Applications. He serves as a trusted adviser to VMware’s customers primarily in the US.

Rawlinson is amongst the few VMware Certified Design Experts (VCDX#86) in the world, and is an author of multiple text books publications based on VMware and other technologies. He is the owner and main author of virtualization blog punchingclouds.com.

- Follow Rawlinson’s blogs:
 - http://blogs.vmware.com/vsphere/storage
 - http://www.punchingclouds.com/
- Follow Rawlinson on Twitter:
 - @PunchingClouds

Nikolaj Kjeldsen is a Global Architect in the Technology Solutions group at Brocade Communications.

With a background in Storage, Converged Infrastructure, and Networking he architects solutions from a business and application perspective while ensuring the value of the network is fully unlocked.

Nikolaj is active in the enterprise IT architecture community and an author of several publications. He holds a MSc. Degree in Telecommunications engineering.

- Follow Nikolaj on Twitter
 - @nikolajbk