Home > Blogs > VMware VROOM! Blog > Tag Archives: Performance

Tag Archives: Performance

Performance of SQL Server 2017 for Linux VMs on vSphere 6.5

Microsoft SQL Server has long been one of the most popular applications for running on vSphere virtual machines.  Last year there was quite a bit of excitement when Microsoft announced they were bringing SQL Server to Linux.  Over the last year Microsoft has had quite a bit of interest in SQL Server for Linux and it was announced at Microsoft Ignite last month that it is now officially launched and generally available.

VMware and Microsoft have collaborated to validate and support the functionality and performance scalability of SQL Server 2017 on vSphere-based Linux VMs.  The results of that work show SQL Server 2017 for Linux installs easily and has great performance within VMware vSphere virtual machines. VMware vSphere is a great environment to be able to try out the new Linux version of SQL Server and be able to also get great performance.

Using CDB, a cloud database benchmark developed by the Microsoft SQL Server team, we were able to verify that the performance of SQL Server for Linux in a vSphere virtual machine was similar to other non-virtualized and virtualized operating systems or platforms.

Our initial reference test size was relatively small, so we wanted to try out testing larger sizes to see how well SQL Server 2017 for Linux performed as the VM size was scaled up.  For the test, we used a four socket Intel Xeon E7-8890 v4 (Broadwell)-based server with 96 cores (24 cores per socket).  The initial test began with a 24 virtual CPU VM to match the number of physical cores of a single socket.  Additional tests were run by increasing the size of the VM by 24 vCPUs for each test until, in the final test, the VM had 96 total vCPUs.  We configured the virtual machine with 512 GB of RAM and separate log and data disks on an SSD-based Fibre Channel SAN.  We used the same best practices for SQL Server for Linux as what we normally use for the windows version as documented in our published best practices guide for SQL Server on vSphere.

The results showed that SQL Server 2017 for Linux scaled very well as the additional vCPUs were added to the virtual machine. SQL Server 2017 for Linux is capable of scaling up to handle very large databases on VMware vSphere 6.5 Linux virtual machines.

Skylake Update – Oracle Database Performance on vSphere 6.5 Monster Virtual Machines

We were able to get one of the new four-socket Intel Skylake based servers and run some more tests. Specifically we used the Xeon Platinum 8180 processors with 28 cores each. The new data has been added to the Oracle Monster Virtual Machine Performance on VMware vSphere 6.5 whitepaper. Please check out the paper for the full details and context of these updates.

The generational testing in the paper now includes a fifth generation with a 112 vCPU virtual machine running on the Skylake based server. Performance gain from the initial 40 vCPU VM on Westmere-EX to the Skylake based 112 vCPU VM is almost 4x.

The performance gained from Hyper-Threading was also updated and shows a 27% performance gain from the use of Hyper-Threads. The test was conducted by running two 112 vCPU VMs at the same time so that all 224 logical threads are active. The total throughput from the two VMs is then compared with the throughput from a single VM.

My colleague David Morse has also updated his SQL Server monster virtual machine whitepaper with Skylake data as well.

Updated – SQL Server VM Performance with vSphere 6.5, October 2017

Back in March, I published a performance study of SQL Server performance with vSphere 6.5 across multiple processor generations.  Since then, Intel has released a brand-new processor architecture: the Xeon Scalable platform, formerly known as Skylake.

Our team was fortunate enough to get early access to a server with these new processors inside – just in time for generating data that we presented to customers at VMworld 2017.

Each Xeon Platinum 8180 processor has 28 physical cores (pCores), and with four processors in the server, there was a whopping 112 pCores on one physical host!  As you can see, that extra horsepower provides nice database server performance scaling:

Generational SQL Server VM Database Performance

Generational SQL Server VM Database Performance

For more details and the test results, take a look at the updated paper:
Performance Characterization of Microsoft SQL Server on VMware vSphere 6.5

Highlights from: The Extreme Performance Series at VMworld 2017

Thank you to everyone who attended VMworld 2017 and especially those that participated in this year’s Extreme Performance Series.  While the conference is wrapped up, the content created and presented there, is now available to everyone! So grab a chair and advance your performance skill set.

Continue reading

Performance of Enterprise Web Applications in Docker Containers on VMware vSphere 6.5

Docker containers are growing in popularity as a deployment platform for enterprise applications. However, the performance impact of running these applications in Docker containers on virtualized infrastructures is not well understood. A new white paper is available that uses the open source Weathervane performance benchmark to investigate the performance of an enterprise web application running in Docker containers in VMware vSphere 6.5 virtual machines (VMs).  The results show that an enterprise web application can run in Docker on a VMware vSphere environment with not only no degradation of performance, but even better performance than a Docker installation on bare-metal.

Weathervane is used to evaluate the performance of virtualized and cloud infrastructures by deploying an enterprise web application on the infrastructure and then driving a load on the application.  The tests discussed in the paper use three different deployment configurations for the Weathervane application.

  • VMs without Docker containers: The application runs directly in the guest operating systems in vSphere 6.5 VMs, with no Docker containers.
  • VMs with Docker containers: The application runs in Docker containers, which run in guest operating systems in vSphere 6.5 VMs.
  • Bare-metal with Docker containers: The application runs in Docker containers, but the containers run in an operating system that is installed on a bare-metal server.

The figure below shows the peak results achieved when running the Weathervane benchmark in the three configurations.  The results using Docker containers include the impact of tuning options that are discussed in detail in the paper.

Some important things to note in these results:

  • The performance of the application using Docker containers in vSphere 6.5 VMs is almost identical to that of the same application running in VMs without Docker.
  • The application running in Docker containers in VMs outperforms the same application running in Docker containers on bare metal by about 5%. Most of this advantage can be attributed to the sophisticated algorithms employed by the vSphere 6.5 scheduler.

The results discussed in the paper, along with the results of previous investigations of Docker performance on vSphere, show that vSphere 6.5 is an ideal platform for deploying applications in Docker containers.

DRS Lens – A new UI dashboard for DRS

DRS Lens provides an alternative UI for a DRS enabled cluster. It gives a simple, yet powerful interface to monitor the cluster real time and provide useful analyses to the users. The UI is comprised of different dashboards in the form of tabs for each cluster being monitored.

Continue reading

The Extreme Performance Series at VMworld 2017

I’m excited to announce that the “Extreme Performance Series” is back for its 5th year, and with 7 additional sessions, it’s our largest year ever! These sessions are created and presented by VMware’s best and most distinguished performance engineers, principals, architects and gurus. You do not want to miss these advanced sessions.

Continue reading

Introducing VMmark3: A highly flexible and easily deployed benchmark for vSphere environments

VMmark 3.0, VMware’s multi-host virtualization benchmark is generally available here.  VMmark3 is a free cluster-level benchmark that measures the performance, scalability, and power of virtualization platforms.

VMmark3 leverages much of previous VMmark generations’ technologies and design.  It continues to utilize a unique tile-based heterogeneous workload application design. It also deploys the platform-level workloads found in VMmark2 such as vMotion, Storage vMotion, and Clone & Deploy.  In addition to incorporating new and updated application workloads and infrastructure operations, VMmark3 also introduces a new fully automated provisioning service that greatly reduces deployment complexity and time.

Continue reading

NEW VMworld 2017 Bootcamp – vSphere Advanced Performance Design, Configuration and Troubleshooting

New this year for VMworld 2017 in Las Vegas, we will be offering a pre-VMworld bootcamp focused on vSphere platform performance. Specific SQL and Oracle bootcamps will still be offered, but we have had many requests for a workload agnostic program. This bootcamp will enable you to confidently support all your virtual workloads and give you an opportunity to directly interact with VMware Performance Engineering.

Continue reading

Introducing TPCx-HS Version 2 – An Industry Standard Benchmark for Apache Spark and Hadoop clusters deployed on premise or in the cloud

Since its release on August 2014, the TPCx-HS Hadoop benchmark has helped drive competition in the Big Data marketplace, generating 23 publications spanning 5 Hadoop distributions, 3 hardware vendors, 2 OS distributions and 1 virtualization platform. By all measures, it has proven to be a successful industry standard benchmark for Hadoop systems. However, the Big Data landscape has rapidly changed over the last 30 months. Key technologies have matured while new ones have risen to prominence in an effort to keep pace with the exponential expansion of datasets. One such technology is Apache Spark.

spark-logo-trademarkAccording to a Big Data survey published by the Taneja Group, more than half of the respondents reported actively using Spark, with a notable increase in usage over the 12 months following the survey. Clearly, Spark is an important component of any Big Data pipeline today. Interestingly, but not surprisingly, there is also a significant trend towards deploying Spark in the cloud. What is driving this adoption of Spark? Predominantly, performance.

Today, with the widespread adoption of Spark and its integration into many commercial Big Data platform offerings, I believe there needs to be a straightforward, industry standard way in which Spark performance and price/performance could be objectively measured and verified. Just like TPCx-HS Version 1 for Hadoop, the workload needs to be well understood and the metrics easily relatable to the end user.

Continuing on the Transaction Processing Performance Council’s commitment to bringing relevant benchmarks to the industry, it is my pleasure to announce TPCx-HS Version 2 for Spark and Hadoop. In keeping with important industry trends, not only does TPCx-HS support traditional on premise deployments, but also cloud.

I envision that TPCx-HS will continue to be a useful benchmark standard for customers as they evaluate Big Data deployments in terms of performance and price/performance, and for vendors in demonstrating the competitiveness of their products.

 

Tariq Magdon-Ismail

(Chair, TPCx-HS Benchmark Committee)

 

Additional Information:  TPC Press Release