Home > Blogs > VMware VROOM! Blog > Tag Archives: benchmarking

Tag Archives: benchmarking

Introducing VMmark ML

VMmark has been the go-to virtualization benchmark for over 12 years. It’s been used by partners, customers, and internally in a wide variety of technical applications. VMmark1, released in 2007, was the de-facto virtualization consolidation benchmark in a time when the overhead and feasibility of virtualization was still largely in question. In 2010, as server consolidation became less of an “if” and more of a “when,” VMmark2 introduced more of the rich vSphere feature set by incorporating infrastructure workloads (VMotion, Storage VMotion, and Clone & Deploy) alongside complex application workloads like DVD Store. Fast forward to 2017, and we released VMmark3, which builds on the previous versions by integrating an easy automation deployment service alongside complex multi-tier modern application workloads like Weathervane. To date, across all generations, we’ve had nearly 300 VMmark result publications (297 at the time of this writing) and countless internal performance studies.

Unsurprisingly, tech industry environments have continued to evolve, and so must the benchmarks we use to measure them. It’s in this vein that the VMware VMmark performance team has begun experimenting with other use cases that don’t quite fit the “traditional” VMmark benchmark. One example of a non-traditional use is Machine Learning and its execution within Kubernetes clusters. At the time of this writing, nearly 9% of the VMworld 2019 US sessions are about ML and Kubernetes. As such, we thought this might be a good time to provide an early teaser to VMmark ML and even point you at a couple of other performance-centric Machine Learning opportunities at VMworld 2019 US.

Although it’s very early in the VMmark ML development cycle, we understand that there’s a need for push-button-easy, vSphere-based Machine Learning performance analysis. As an added bonus, our prototype runs within Kubernetes, which we believe to be well-suited for this type of performance analysis.

Our internal-only VMmark ML prototype is currently streamlined to efficiently perform a limited number of operations very well as we work with partners, customers, and internal teams on how VMmark ML should be exercised. It is able to:

  1. Rapidly deploy Kubernetes within a vSphere environment.
  2. Deploy a variety of containerized ML workloads within our newly created VMmark ML Kubernetes cluster.
  3. Execute these ML workloads either in isolation or concurrently to determine the performance impact of architectural, hardware, and software design decisions.

VMmark ML development is still very fluid right now, but we decided to test some of these concepts/assumptions in a “real-world” situation. I’m fortunate to work alongside long-time DVD Store author and Big Data guru Dave Jaffe on VMmark ML.  As he and Sr. Technical Marketing Architect Justin Murray were preparing for their VMworld US talk, “High-Performance Virtualized Spark Clusters on Kubernetes for Deep Learning [BCA1563BU]“, we thought this would be a good opportunity to experiment with VMmark ML. Dave was able to use the VMmark ML prototype to deploy a 4-node Kubernetes cluster onto a single vSphere host with a 2nd-Generation Intel® Xeon® Scalable processor (“Cascade Lake”) CPU. VMmark ML then pulled a previously stored Docker container with several MLperf workloads contained within it. Finally, as a concurrent execution exercise, these workloads were run simultaneously, pushing the CPU utilization of the server above 80%. Additionally, Dave is speaking about vSphere Deep Learning performance in his talk “Optimize Virtualized Deep Learning Performance with New Intel Architectures [MLA1594BU],“ where he and Intel Principal Engineer Padma Apparao explore the benefits of Vector Neural Network Instructions (VNNI). I definitely recommend either of these talks if you want a deep dive into the details of VNNI or Spark analysis.

Another great opportunity to learn about VMware Performance team efforts within the Machine Learning space is to attend the Hands-on-Lab Expert Lead Workshop, “Launch Your Machine Learning Workloads in Minutes on VMware vSphere [ELW-2048-01-EMT_U],” or take the accompanying lab. This is being led by another VMmark ML team member Uday Kurkure along with Staff Global Solutions Consultant Kenyon Hensler. (Sign up for the Expert Lead using the VMworld 2019 mobile application or on my.vmworld.com.)

Our goal after VMworld 2019 US is to continue discussions with partners, customers, and internal teams about how a benchmark like VMmark ML would be most useful. We also hope to complete our integration of Spark within Kubernetes on vSphere and reproduce some of the performance analysis done to date. Stay tuned to the performance blog for additional posts and details as they become available.

New Scheduler Option for vSphere 6.7 U2

Along with the recent release of VMware vSphere 6.7 U2, we published a new whitepaper that shows the performance of a new scheduler option that was included in the 6.7 U2 update.  We referred to this new scheduler option internally as the “sibling” scheduler, but the official name is the side-channel aware scheduler version 2, or SCAv2.  The whitepaper includes full details about SCAv1 and SCAv2, the L1TF security vulnerability that made them necessary, and the performance implications with several different workload types.  This blog is a brief overview of the key points, but we recommend that you check out the full document.

In August of 2018, a security vulnerability known as L1TF, affecting systems using Intel processors, was revealed, and patches and remediations were also made available. Intel provided micro-code updates for its processors, operating system patches were made available, and VMware provided an update for vSphere. The full details of the vCenter and ESXi patches are in a VMware security advisory that links to individual KB articles.

Continue reading

First VMmark 3.1 Publications, Featuring New Cascade Lake Processors

VMmark is a free tool used by hardware vendors and others to measure the performance, scalability, and power consumption of virtualization platforms.  If you’re unfamiliar with VMmark 3.x, each tile is a grouping of 19 virtual machines (VMs) simultaneously running diverse workloads commonly found in today’s data centers, including a scalable Web simulation, an E-commerce simulation (with backend database VMs), and standby/idle VMs.

As Joshua mentioned in a recent blog post, we released VMmark 3.1 in February, adding support for persistent memory, improving workload scalability, and better reflecting secure customer environments by increasing side-channel vulnerability mitigation requirements.

I’m happy to announce that today we published the first VMmark 3.1 results.  These results were obtained on systems meeting our industry-leading side-channel-aware mitigation requirements, thus continuing the benchmark’s ability to provide an indication of real-world performance.

Continue reading

IoT Analytics Benchmark adds neural network–based deep learning with Keras and BigDL

The IoT Analytics Benchmark released last year dealt with an important Internet of Things use case—monitoring factory sensor data for impending failure conditions. This year, we are tackling an equally important use case—image classification. Whether used in facial recognition, license plate readers, inspection systems, or autonomous vehicles, neural network–based deep learning is making image detection and classification a viable technology.

As in the classic machine learning used in the original IoT Analytics Benchmark code (which used the Spark Machine Learning Library), the new deep learning code first trains a model using pre-labeled images and then deploys that model to infer the classification of new images. For IoT this inference step is the most important. Thus, the new programs, designated as IoT Analytics Benchmark DL, use previously trained models (included in the kit) to demonstrate inferencing that can be performed at the edge (on small gateway systems) or in scaled-out Spark clusters.

Continue reading

vSAN Performance Diagnostics Now Shows “Specific Issues and Recommendations” for HCIBench

By Amitabha Banerjee and Abhishek Srivastava

The vSAN Performance Diagnostics feature, which helps customers to optimize their benchmarks or their vSAN configurations to achieve the best possible performance, was first introduced in vSphere 6.5 U1. vSAN Performance Diagnostics is a “cloud connected” feature and requires participation in the VMware Customer Experience Improvement Program (CEIP). Performance metrics and data are collected from the vSAN cluster and are sent to the VMware Cloud. The data is analyzed and the results are sent back for display in the vCenter Client. These results are shown as performance issues, where each issue includes a problem with its description and a link to a KB article.

In this blog, we describe how vSAN Performance Diagnostics can be used with HCIBench and show the new feature in vSphere 6.7 U1 that provides HCIBench specific issues and recommendations.

What is HCIBench?

HCIBench (Hyper-converged Infrastructure Benchmark) is a standard benchmark that vSAN customers can use to evaluate the performance of their vSAN systems. HCIBench is an automation wrapper around the popular and proven VDbench open source benchmark tool that makes it easier to automate testing across an HCI cluster. HCIBench, available as a fling, simplifies and accelerates customer performance testing in a consistent and controlled way.

Continue reading

SPBM compliance check just got faster in vSphere 6.7 U1!

vSphere 6.7 U1 includes several enhancements in Storage Policy-Based Management (SPBM) to significantly reduce CPU use and generate a much faster response time for compliance checking operations.

SPBM is a framework that allows vSphere users to translate their workload’s storage requirements into rules called storage policies. Users can apply storage policies to virtual machines (VMs) and virtual machine disks (VMDKs) using the vSphere Client or through the VMware Storage Policy API’s rich set of managed objects and methods. One such managed object is PbmComplianceManager. One of its methods, PbmCheckCompliance, helps users determine whether or not the storage policy attached to their VM is being honored.

PbmCheckCompliance is automatically invoked soon after provisioning operations such as creating, cloning, and relocating a VM. It is also automatically triggered in the background once every 8 hours to help keep the compliance records up-to-date.

Continue reading

New white paper: Big Data performance on VMware Cloud on AWS: Spark machine learning and IoT analytics performance on-premises and in the cloud

By Dave Jaffe

A new white paper is available comparing Spark machine learning performance on an 8-server on-premises cluster vs. a similarly configured VMware Cloud on AWS cluster.

Here is what the VMware Cloud on AWS cluster looked like:

Screenshot of cluster configuration

VMware Cloud on AWS configuration for performance tests

Three standard analytic programs from the Spark machine learning library (MLlib), K-means clustering, Logistic Regression classification, and Random Forest decision trees, were driven using spark-perf. In addition, a new, VMware-developed benchmark, IoT Analytics Benchmark, which models real-time machine learning on Internet-of-Things data streams, was used in the comparison. The benchmark is available from GitHub.

Continue reading

Persistent Memory Performance in vSphere 6.7

We published a paper that shows how VMware is helping advance PMEM technology by driving the virtualization enhancements in vSphere 6.7. The paper gives a detailed performance analysis of using PMEM technology on vSphere using various workloads and scenarios.

These are the key points that we cover in this white paper:

  • We explain how PMEM can be configured and used in a vSphere environment.
  • We show how applications with different characteristics can take advantage of PMEM in vSphere. Below are some of the use-cases:
    • How PMEM device limits can be achieved under vSphere with little to no overhead of virtualization. We show virtual-to-native ratio along with raw bandwidth and latency numbers from fio, an I/O microbenchmark.
    • How traditional relational databases like Oracle can benefit from using PMEM in vSphere.
    • How scaling-out VMs in vSphere can benefit from PMEM. We used Sysbench with MySQL to show such benefits.
    • How modifying applications (PMEM-aware) can get the best performance out of PMEM. We show performance data from such applications, e.g., an OLTP database like SQL Server and an in-memory database like Redis.
    • Using vMotion to migrate VMs with PMEM which is a host-local device just like NVMe SSDs. We also characterize in detail, vMotion performance of VMs with PMEM.
  • We outline some best practices on how to get the most out of PMEM in vSphere.

Read the full paper here.

Oracle Database Performance with VMware Cloud on AWS

You’ve probably already heard about VMware Cloud on Amazon Web Services (VMC on AWS). It’s the same vSphere platform that has been running business critical applications for years, but now it’s available on Amazon’s cloud infrastructure. Following up on the many tests that we have done with Oracle databases on vSphere, I was able to get some time on a VMC on AWS setup to see how Oracle databases perform in this new environment.

It is important to note that VMC on AWS is vSphere running on bare metal servers in Amazon’s infrastructure. The expectation is that performance will be very similar to “regular” onsite vSphere, with the added advantage that the hardware provisioning, software installation, and configuration is already done and the environment is ready to go when you login. The vCenter interface is the same, except that it references the Amazon instance type for the server.

Continue reading

vCenter performance improvements from vSphere 6.5 to 6.7: What does 2x mean?

In a recent blog, the VMware vSphere team shared the following performance improvements in vSphere 6.7 vs. 6.5:

Moreover, with vSphere 6.7 vCSA delivers phenomenal performance improvements (all metrics compared at cluster scale limits, versus vSphere 6.5):
2X faster performance in vCenter operations per second
3X reduction in memory usage
3X faster DRS-related operations (e.g. power-on virtual machine)

As senior engineers within the VMware Performance and vSphere teams, we are writing this blog to provide more details regarding these numbers and to explain how we measured them. We also briefly explain some of the technical details behind these improvements.

Continue reading