Home > Blogs > OpenStack Blog for VMware > Tag Archives: VMware Integrated OpenStack

Tag Archives: VMware Integrated OpenStack

OpenStack Boston Summit VMware Sessions Recap

Watch below to experience VMware’s Speaker Sessions at this year’s OpenStack Summit in Boston!


OpenStack & VMware Getting the Best of Both

Speaker: Andrew Pearce

Come and understand the true value to your organization of combining Openstack and VMware. In this session you will understand the value of having a defcore / Openstack powered solution to enable your developers to provision IaaS, in a way that they want, using the tools that they want. In addition you will be able to enable your operations team to continue to utilize the tools, resources and methodology that they use to ensure that your organization has a production grade environment to support your developers.Deploying Openstack, and getting the advantages of Openstack does not need to be a rip and replace strategy. See how other customers have had their cake and eat it.


OpenStack and VMware: Enterprise-Grade IaaS Built on Proven Foundation

Speakers: Xiao Hu Gao & Hari Kannan 

Running production workloads on OpenStack requires a rock solid IaaS running on a trusted infrastructure platform. Think about upgrading, patching, managing the environment, high availability, disaster recovery, security and the list goes on. VMware delivers a top-notch OpenStack distribution that allows you all of the above and much more. Come to this session to see (with a demo) how you can easily and quickly deploy OpenStack for your dev test as well as production workloads.


Is Neutron Challenging to You? Learn How VMware NSX is the Solution for Regular OpenStack Network & Security Services and Kubernetes

Speakers: Dmitri Desmidt, Yves Fauser

Neutron is challenging in many aspects. The main ones reported by OpenStack admins are: complex implementation of network and security services, high-availability, management/operation/troubleshooting, scale. Additionally, with new Kubernetes and Containers deployments, security between containers and management of container traffic is a new headache. VMware NSX offers a plugin for all Neutron OpenStack installations for ESXi and KVM hypervisors. Learn in this session with multiple live demos how VMware NSX plugin resolves all the Neutron challenges in an easy way.


 Digital Transformation with OpenStack for Modern Service Providers

Speakers: Misbah Mahmoodi, Kenny Lee

The pace of technological change is accelerating at an exponential rate. With the advent of 5G networks and IoT, Communications Service Providers success depends not only on their ability to adapt to changes quickly but to do so faster than competitors. Speed is the of the essence in developing new services, deploying them to subscribers, delivering a superior Quality of Experience, and increasing operational efficiency with lowered cost structures. For CSPs to adapt and remain competitive, they are faced with important questions as they explore the digital transformatVMwareion of their business and infrastructure, and how they can leverage NFV, and OpenStack and open hardware platforms to accelerate change and modernization.


Running Kubernates on a Thin OpenStack

Speakers: Mayan Weiss & Hari Kannan 

Kubernetes is leading the container mindshare and OpenStack community has built integrations to support it. However, running production workloads on Kubernetes is still a challenge. What if there was a production ready, multi-tenant K8s distro? Dream no more. Come to this session to see how we adapted OpenStack + K8s to provide container networking, persistent storage, RBAC, LBaaS and more on VMware SDDC.


OpenStack and OVN: What’s New with OVS 2.7

Speakers: Russel Bryant, Ben Pfaff, Justin Pettit

OVN is a virtual networking project built by the Open vSwitch community.
OpenStack can make use of OVN as its backend networking implementation
for Neutron. OVN and its Neutron integration are ready for use in OpenStack
deployments.

This talk will cover the latest developments in the OVN project and the
latest release, part of OVS 2.7. Enhancements include better performance,
improved debugging capabilities, and more flexible L3 gateways. 
We will take a look ahead the next set of things we expect to work on for
OVN, which includes logging for OVN ACLs (security groups), encrypted
tunnels, native DNS integration, and more.

We will also cover some of the performance comparison results of OVN
as compared with the original OVS support in Neutron (ML2/OVS). Finally, 
we will discuss how to deploy OpenStack with OVN or migrate an existing
deployment from ML2/OVS to OVN.


DefCore to Interop and Back Again: OpenStack Programs and Certifications Explained

Speakers: Mark Voelker & Egle Sigler

Openstack Interop (formerly DefCore) guidelines have been in place for 2 years now, and anyone wanting to use OpenStack logo must pass these guidelines. How are guidelines created and updated? How would your favorite project be added to it? How can you guarantee that your OpenStack deployment will comply with the new guidelines? In this session we will cover OpenStack Interop guidelines and components, as well as explain how they are created and updated.


Senlin: An ideal Bridge Between NFV Orchestrator and OpenStack

Speakers: Xinhui Li, Ethan Lynn, Yanyan Hu

Resource Management is a top requirement in NFV field. Usually, the Orchestrator take the responsibility of parsing a virtual network function into different virtual units (VDU) to deploy and operate over Cloud. Senlin, positioned as clustering resource manager since the born time, can be the ideal bridge between NFV orchestrator with OpenStack: it uses a consolidate model which is directly mapped to a VDU to interact with different backend services like Nova, Neutron, Cinder for compute, network and storage resources per Orchestrator’s demand; it provides rich operational functions like auto-scaling, load-balancing and auto healing. We use a popular VIMS typed VNF to illustrate how to easily deploy a VNF on OpenStack and manage it in a scalable and flexible way.


High Availability and Scalability Management of VNF

Speakers: Haiwei Xu, Xinhui Li, XueFeng Liu

Now network function virtualization (NFV) is growing rapidly and widely adopted by many telcom enterprises. In openstack Tacker takes the responsibility of building a Generic VNF Manager (VNFM) and a NFV Orchestrator (NFVO) to deploy and operate Network Services and Virtual Network Functions (VNFs) on the infrastructure platform. For the VNFs which can work as a loadbalancer or a firewall, Tacker needs to consider the availability of each VNF to ensure they are not overloaded or out of work. To prevent VNFs from being overloaded or down, Tacker need to make VNFs HA and auto-scaling. So in fact the VNFs of certain function should not be a single node, but a cluster.

That comes out a problem of cluster managing. In OpenStack environment there is a Clustering service called Senlin which provides scalability management and HA functions for the nodes, those features are exactly fit for Tacker’s requirement.

In this talk we will give you a general introduction of this feature.


How an Interop Capability Becomes Part of the OpenStack Interop Guidelines

Speakers: Rochelle Grober, Mark Voelker, Luz Cazares

OpenStack Interop Working Group (formerly DefCore) produces the OpenStack Powered (TM) Guidelines (a.k.a. Interoperability Guidelines). But, how do we decide what goes into the guideline? How do we define these so called “Capabilities”? And how does the team “score” them? Attend this session to learn what we mean by “Capability”, the requirements a capability must meet, the process the group follows to grade those capabilities… And, you know what, lets score your favorite thing live.


OpenStack Interoperability Challenge and Interoperability Workgroup Updates: The Adventure Continues

Speakers: Brad Topol, Mark Voelker, Tong Li

The OpenStack community has been driving initiatives on two sides of the interoperability coin: workload portability and API/code standards for OpenStack Powered products. The first phase of the OpenStack Interoperability Challenge culminated with a Barcelona Summit Keynote demo comprised of 16 vendors all running the same enterprise workload to illustrate that OpenStack enables workload portability across OpenStack clouds. Building on this momentum for its second phase, the multi-vendor Interop Challenge team has selected new advanced workloads based on Kubernetes and NFV applications to flush out portability issues in these commonly deployed workloads. Meanwhile, the recently formed Interop Working Group continues to roll out new Guidelines, drive new initiatives, and is considering expanding its scope to cover more vertical use cases. In this presentation, we describe the progress, challenges, and lessons learned from both of these efforts.

Take Advantage of Nova Flavor Extra-specs and vSphere QoS to Make Delivering SLAs Much Simpler

Resource and over-subscription management are always the most challenging tasks facing a Cloud Admin. To deliver a guaranteed SLA, one method OpenStack Cloud Admins have used is to create separate compute aggregates with different allocation / over-subscription ratios. Production workloads that require guaranteed CPU, memory, or storage would be placed into a non-oversubscribed aggregate with 1:1 over-subscription, dev workloads may be placed into a best effort aggregate with N:1 over-subscription. While this simplistic model accomplishes its purpose of an SLA guarantee on paper, it comes with a huge CapEx and/or high overhead for capacity management / augmentation. Worst yet, because host aggregate level over-subscription in OpenStack is simply static metadata consumed by the nova scheduler during VM placement, not real time VM state or consumption, huge resource imbalances within the compute aggregate and noisy neighbor issues within a nova compute host are common occurrences.

New workloads can be placed on a host running close to capacity (real time consumption), while remaining hosts are running idle due to differences in application characteristics and usage pattern. Lack of automated day 2 resource re-balance(management) further exacerbates the issue. To provide white glove treatment to critical tenants and workloads, Cloud Admins must deploy additional tooling to discover basic VM to Hypervisor mapping based on OpenStack project IDs. This is both expensive and ineffective in meeting SLAs.

Over-subscription works if resource consumption can be tracked and balanced across a compute cluster. Noisy neighbor issues can be solved only if the underlying infrastructure supports quality of service (QoS).  By leveraging OpenStack Nova flavor extra-spec extensions along with vSphere industry proven per VM resource reservation allocation (expressed using shares, limits and reservations), OpenStack Cloud Admins can deliver enhanced QoS while maintaining uniform consumption across a compute cluster.  It is possible to leverage Image metadata to deliver QoS as well, this blog will focus on Nova flavor extra-spec.

The VMware Nova flavor extension to OpenStack was first introduced upstream in Kilo and is officially supported in VIO release 2.0 and above. Additional requirements are outlined below:

  • Requires VMware Integrated OpenStack version 2.0.x or greater
  • Requires vSphere version 6.0 or greater
  • Network Bandwidth Reservation requires NIOC version 3
  • VMware Integrated OpenStack access as a cloud administrator

Resource reservations can be set for following resource categories:

  • CPU (MHz)
  • Memory (MB)
  • Disk IO (IOPS)
  • Network Bandwidth (Mbps)

Within each resource category, Cloud Admin has the option to set:

  • Limit – Upper bound, not to exceed limit resource utilization
  • Reservation – Guaranteed minimum reservation
  • Share Level – The allocation level. This can be ‘custom’, ‘high’ ‘normal’ or ‘low’.
  • Shares Share –  In the event that ‘custom’ is used, this is the number of shares.

Complete Nova flavor extra-spec details and deployment options can be found here.  vSphere Resource Management capabilities and configuration guidelines is a great reference as well and can be found here.

Let’s look at an example using Hadoop to demonstrate VM resource management with flavor extra-specs. Data flows from Kafka into HDFS, every 30 minutes there’s a batch job to consume the newly ingested data.  Exact details of the Hadoop workflow are outside the scope of this blog. If you are not familiar with Hadoop, some details can be found here.  Resources required for this small scale deployment are outlined below:

Node Type

 

Core

(reserved – Max)

 

Memory

(reserved – Max)

 

Disk

 

Network Limit

Master / Name Node

4 16 G 70 G 500 Mbps
Data Node 4 16 G 70 G

1000 Mbps

Kafka 0.4-2 2-4 G 25 G

100 Mbps

Based on above requirements, Cloud Admin needs to create Nova flavors to match maximum CPU / Memory / Disk requirements for each Hadoop component.  Most of OpenStack Admins should be very familiar with this process.

flavor-create

 

 

 

 

Based on the reservation amount, attach corresponding nova extra specs to each flavor:

extra-spec

 

 

Once extra specs are mapped, confirm setting using the standard nova flavor-show command:

summary-flavor

 

 

 

 

 

In just three simple steps, resource reservation settings are complete.   Any new VM consumed using new flavors from OpenStack (API, command line or Horizon GUI) will have resource requirements passed to vSphere (VMs can be migrated using the nova rebuild VM feature).

Instead of best effort, vSphere will guarantee resources based on nova flavor extra-spec definition. Specific to our example, 4 vCPU / 16G / Max 1G network throughput will be reserved for each DataNode, NameNode with 4 vCPU / 16G / Max 500M throughput and Kafka nodes will have 20% vCPU / 50% Memory reserved. Instances boot into “Error” state if requested resources are not available, ensuring existing workload application SLAs are not violated. You can see that the resource reservation created by the vSphere Nova driver are reflected in the vCenter interface:

Name Node CPU / Memory:

hadoop_nn_cpu_mem

 

 

 

 

 

 

 

 

Name Node Network Bandwidth:

hadoop_nn_network

 

 

 

 

 

 

 

 

 

 

Data Node CPU / Memory:

dn_cpu_mem

 

 

 

 

 

 

 

 

Data Node Network Bandwidth:

dn_network

 

 

 

 

 

 

 

Kafka Node CPU / Memory:

kafka_cpu_mem

 

 

 

 

 

 

 

 

Kafka Network Bandwidth:

kafka_network

 

 

 

 

 

 

 

vSphere will enforce strict admission control based on real time resource allocation and load. New workloads will be admitted only if SLA can be honored for new and existing applications. Once a workload is deployed, in conjunction with vSphere DRS, workload rebalance can happen automatically between hypervisors to ensure optimal host utilization (future blog) and avoid any noisy neighbor issues. Both features are available out of box, no customization is required.

By taking advantage of vSphere VM resource reservation capabilities, OpenStack Cloud Admins can finally enjoy the superior capacity and over-subscription capabilities a cloud environment offers. Instead of deploying excess hardware, Cloud Admins can control when and where additional hardware are needed based on real time application consumption and growth. Ability to consolidate, simplify, and control your infrastructure will help to reduced power, space, and eliminate the need for any out of box customization in tooling or operational monitoring. I invite you to test out nova-extra spec in your VIO environment today or encourage your IT team to try our VMware Integrated OpenStack Hands-On-Lab, no installation is required.

 

VIO Speed Challenge – Can a New Guy Get Production Quality OpenStack Setup and Running Under Three Hours

This article describes an OpenStack setup. To put it into context, I recently joined VMware as a Technical Marketing Manager responsible for VMware Integrated OpenStack technical product marketing and field enablement. After a smooth onboarding process (accounts, benefits, etc), my first task was to get lab environments I inherited up and running again. I came from a big OpenStack shop where deployment automation was built in house using both Puppet and Ansible, so my first questions were; Where’s the site hiera data? Settings for Cobbler environment? Which playbook to run to spin up controller VM nodes? Once the vm is up, which playbooks are responsible for deployment and configuration of keystone, nova, cinder, neutron, etc. How to seed the environment once OpenStack is configured and running? It was always a multi-person, multi-week effort. Everyone maintained a cheat sheet loaded with deployment caveats and workarounds (long list since increased feature = increased complexity = increased caveats = slow time to market). Luckily with VMware Integrated OpenStack, all those decision points and complexity are abstracted for the Cloud Admin. Really, the only decision to make is:

  • Restore from database backup – Restore from backup processes can be found here.
  • Redeploy and Import.

Redeploy seemed more interesting so I decided to give it a shot (will save restore for a different blog if there is interest).

Note: Redeploy will not clean up vSphere resources. One could re-import vm resources from vCenter once deployment completes. Refer to Instructions here.

Lab Topology:

Lab environment consists of 3 ESXi clusters

  • Management (vCenter, VIO, vROPS, vRealize Log Insight, vRealize Operation Manager, NSX management, NSX Controller and etc)
  • Edge ( OpenStack neutron tenant resources – NSX Edge)
  • Production (This is where Tenant VMs reside)

One instance of NSX-v spanning across all 3 clusters from a networking perspective.

Screen Shot 2017-01-21 at 10.48.43 PM

VIO OpenStack Deployment:

VMware Integrated Openstack can be deployed in 2 ways, Full HA or Compact. Compact mode was recently introduced in 3.0 and requires significantly fewer hardware resources and memory than full HA mode. All OpenStack components can be deployed in 2 VMs with Compact mode. Enterprise grade OpenStack high availability can be achieved by taking advantage of the HA capabilities of the vSphere infrastructure. Compact mode is useful for multiple, small deployments. Full HA mode provides high availability at the application layer. The HA deployment consists of a dedicated management node (aka OMS node), 3 DB, 2 HAproxy and 2 Controller nodes. Ceilometer can be enabled after completion of the VIO base stack deployment. Enterprise HA mode is what I chose to deploy.

Since this environment is new to me, I wanted to avoid playing detective and spending days trying to reverse engineer the entire setup. Luckily VIO has a built-in export configuration capability. Simply navigate to the OpenStack deployment (Home -> VMware Integrated OpenStack -> OpenStack Deployments), all OpenStack settings can be exported with a single click:

Screen Shot 2017-01-19 at 3.32.20 PM

In some ways the exported configuration file is similar to traditional site hiera data except much simpler to consume. The data is in JSON format so it is easy to read and only information specific to my OpenStack setup is included. I no longer need to worry about kernel / TCP settings, interfaces to configure for management vs. data, NIC bonding, driver settings, haproxy endpoints, etc. Even the Ansible inventory is automatically created and managed based on deployment data. This is because VIO is designed to work out of box with the VMware suite of products, allowing Cloud Admins to focus on delivering SLAs instead of maintaining thousands of hard to remember key/value pairs. Advanced users can still look into inventory and configuration parameter details. The majority of deployment metrics are maintained on the OMS node in the following directories: (Please Note: The settings below are intended for viewing only and should not be modified without VMware support. The OMS node is primarily used as a starting point for troubleshooting, run viocli commands and SSH to the other nodes):

Screen Shot 2017-01-23 at 1.09.04 PM

With configuration saved, I went ahead and deleted the old deployment and clicked the Deploy OpenStack link to redeploy:

Screen Shot 2017-01-21 at 8.50.52 PM

The process to re-deploy a VIO OpenStack cluster is extremely simple, one simply selects an exported template to pre-fill configuration settings.

Screen Shot 2017-01-21 at 8.52.04 PM

The remaining deployment processes are well documented via other VMware blogs. References can be found here.

The entire Full HA mode deployment process took slightly over 50 minutes because of an unexpected NSX disk error that prevented neutron from starting. The deployment took 30 minutes with a clean environment (see below). Compact mode users should expect deployment to take as little as 15 minutes.

Screen Shot 2017-01-21 at 8.53.36 PM

Create VM and Test External Connectivity:

Once deployment is completed, simply create a L2 private network, and test that VMs can boot successfully in the default tenant project. Note, in order for a VM to connect externally, an external network needs to be created, associate the private and external networks to a NAT router, request a floating ip and finally associate the floating ip to the test VM. This is all extremely simple as VIO is 100% based on DefCore compliant OpenStack APIs on top of VMware’s best-of-breed SDDC infrastructure. Two neutron commands are all that’s needed to create an external network:

Screen Shot 2017-01-20 at 4.36.24 PM

Floating IP is a fancy OpenStack word for NAT. In most OpenStack implementations NAT translation happens in the neutron tenant router. A VIO neutron tenant router(s) can be deployed in 3 different modes – centralized exclusive, centralized shared, or distributed. Performance aside, the biggest difference between centralized and distributed mode is the number of control VM’s deployed to support the logical routing function. Distributed mode requires 2 NSX control plane router VMs, one router instance (dLR) for optimized East to West traffic between hypervisors. A second instance is deployed to take care of North – South external traffic flow via NAT. A single NSX control VM instance is required for centralized mode. In centralized mode, all routed traffic ( N -> S, E -> W) flows through a central NSX Edge Service Gateway (ESG). Performance and scale requirements will determine which mode to choose. Centralized shared is the default behavior. Marcos Hernandez had written an excellent blog in the past on NSX networking and VIO. Marcos’s blog can be found here.

An enterprise grade NSX NAT router can be created via three neutron commands, one command to create the router, and two commands to associate corresponding neutron networks.

Screen Shot 2017-01-20 at 4.59.24 PM

Once the router is created, simply allocate a floating IP, and associate the floating IP to the test VM instance:

Screen Shot 2017-01-21 at 12.17.41 AM

The entire process from deployment to external VM reachability took me less than 3 hours in total, not bad for a new guy!

Deploying and configuring a production grade OpenStack environment traditionally takes weeks by highly skilled DevOps engineers specializing in deployment automation, in-depth knowledge of repo and package management, and strong Linux system administration. To come up with the right CI/CD process to support new features and align with upstream within a release is extremely difficult and results in snowflake environments.

The VIO approach changes all that. I’m impressed with what VMware has done to abstract away traditional complexities involved in deploying, supporting, and maintaining an enterprise grade OpenStack environment. Leveraging VMware’s suite of products in the backend, an enterprise grade OpenStack can be deployed and configured in hours rather than weeks. If you haven’t already, make sure to give VMware Integrated OpenStack a try, you will save tremendous amounts of time, meet the most demanding requests of application developers, while providing the highest SLA possible. Download now and get started , or dare your IT team to try our VMware Integrated OpenStack Hands-On-Lab , no installation required.

How To Efficiently Derive Value From VMware Integrated OpenStack

One of our recent posts on this blog covered how VMware Integrated Openstack (VIO) can be deployed in less than 15 minutes thanks to an easy and friendly wizard-driven deployment.

That post has also mentioned that recent updates have been added to VIO that focus on its ease of use and consumption, including the integration with your existing vSphere environment.

 

This article will explore in greater detail the latter topic and will focus on two features that are designed to help customers start deriving value from VIO quickly.


vSphere Templates as OpenStack Images

 

An OpenStack cloud without any image is like a physical server without an operating system – not so useful!

 

One of the first elements you want to seed your cloud with is images so users/developers can start building applications. In a private cloud environment, cloud admins will want to expose a list of standard OS (Operating System, not OpenStack…) images to be used to that end, in other words OS master images.

 

When VIO is deployed on top of an existing vSphere environment, these OS master images are generally already present in the virtualization layer as vSphere templates and a great deal of engineering hours have gone into creating and configuring those images to reflect the very own needs of a given corporate organization in terms of security, compliance or regulatory requirements – OS hardening, customization, agents installation, etc…

 

What if you were able to reuse those vSphere templates and turn them into OpenStack images and hence preserve all of your master OS configurations across all of your cloud deployments?

VIO supports this capability out of the box (see diagram below) and enables users to leverage their existing vSphere templates by adding them to their OpenStack deployment as Glance images, which can then be booted as OpenStack instances or used to create bootable Cinder volumes.

 

The beauty of this feature is that it is done without copying the template into the Glance data-store. The media only exists in one place (the original data-store where the template is stored) and we will actually create a “pointer” from the OpenStack image object towards the vSphere template thus saving us from the tedious and possibly lengthy process of copying media from one location to another (OS images tend to be pretty large in corporate environments).

 

This feature is available through the glance CLI only and here are the high-level steps that need to be performed to create an image:

– First: create an OpenStack image

– Second: note that image ID and specify a location pointing towards the vSphere template

– Third: in the images section of the Horizon dashboard for example, a new image will show up called “corporate-windows-2012-r2” from which instances can be launched.

Note: cloud admins will have to make sure those OS images have the cloud-init package installed on them before they can be fully used in the OpenStack environment. If cloud-init needs to be installed, this can be done either pre- or post- the import process into Glance.

Run the video below for a detailed tutorial on the configuration steps, including CLI commands:

Finally, here’s the section in the official configuration guide: http://tinyurl.com/hx4z4jt


Importing vSphere VMs into OpenStack

 

A frequent request from customers deploying VIO on their existing vSphere implementation is “Can I import my existing VMs into my OpenStack environment?”

 

The business rationale for this request is that IT wants to be consistent and offer a similar level of service and user experience to both the new applications deployed through the OpenStack framework as well as the existing workloads currently running under a vSphere management plane “only”. They basically want users in charge of existing applications to enjoy capabilities such as self-service, lifecycle management, automation, etc…and hence avoid creating a two-tier IT offering.

 

VIO supports this capability by allowing users to quickly import vSphere VMs into VIO and start managing them as instances through standard OpenStack APIs. This feature is also available through CLI only and leverages the newly released VMware DCLI toolset.

 

Here are the high-level steps for importing an existing VM under OpenStack:

– First, list the “Unmanaged” VMs in vCenter (ie unmanaged by VIO)

– Import one of those VMs into a specific project/tenant in OpenStack

– The system will then generate a UUID for the newly created instance and the instance will show up in Horizon where it can be managed like any other running one.

 

 

We hope you enjoyed reading this article and that those features will make you want to go ahead and discover VIO!

If you’re ready to deploy OpenStack today, download it now and get started, or dare your IT team to try our VMware Integrated OpenStack Hands-On-Lab, no installation required.


This article was written by Hassan Hamade a Cloud Solution Architect at VMware in the EMEA SDDC technology practice team. 

16 Partners, One Live Demo – OpenStack Barcelona Interop Challenge

 

During Wednesday morning’s keynote session at the OpenStack Summit in Barcelona, I will be on stage along with several other vendors to show off some of our latest work on interoperability between OpenStack clouds.  We will be demonstrating a single workload running successfully on over a dozen different vendors’ OpenStack products without modification, including VMware Integrated OpenStack 3.0.  The idea got started back in April at the last OpenStack Summit when our friends at IBM challenged vendors to demonstrate that their products were interoperable publicly.


VMware has long been a proponent of fostering interoperability between OpenStack clouds.  I currently co-chair the Interop Working Group (formerly known as the DefCore Committee), and VMware Integrated OpenStack 3.0 is an approved OpenStack-Powered product that is compliant with the 2016.08 interoperability guideline, the newest and strictest guideline approved by the OpenStack Foundation Board of Directors.  We also helped produce the Interop Working Group’s first ever report on interoperability issues.  So why do we care about interoperability?  Shouldn’t everything built on OpenStack behave the same anyhow?  Well, to quote the previously mentioned report on interoperability issues:

 

“OpenStack is tremendously flexible, feature-rich, powerful software that can be used to create clouds that fit a wide variety of use cases including software development, web services and e-commerce, network functions virtualization (NFV), video processing, and content delivery to name a few. Commercial offerings built on OpenStack are available as public clouds, installable software distributions, managed private clouds, appliances, and services. OpenStack can be deployed on thousands of combinations of underpinning storage, network, and compute hardware and software. Because of the incredible amount of flexibility OpenStack offers and the constraints of the many use cases it can address, interoperability between OpenStack clouds is not always assured: due to various choices deployers make, different clouds may have some inconsistent behaviors.  One of the goals of the [Interop Working Group]’s work is to create high interoperability standards so that end users of clouds can expect certain behaviors to be consistent between different OpenStack-Powered Clouds and products.”

 

Think of it this way: another amazingly flexible, powerful thing we use daily is electricity.  Electricity is pretty much the same stuff no matter who supplies it to you or what you are using it for, but the way you consume it might be different for different use cases.  The outlet I plug my laptop into at home is a different shape and supplies a different voltage than the one my electric oven is connected into since the oven needs a lot more juice to bake my cookies than my laptop does to type up a blog post.  My home’s air conditioner does not even have a plug: it is wired directly into the house’s circuit breaker.  I consume most of my electricity as a service provided by my power company, but I can also generate some of my power with solar panels I own myself as long as their outputs can are connected to my power grid.  Moreover, to power up my laptop here in Barcelona, I brought along a plug adapter since Europe has some differences in their power grid based on their set of standards and requirements.  However, even though there are some differences, there are many commonalities: electricity is delivered over metal wiring, terminated at some wall socket, most of the world uses one of a few different voltage ranges, and you pay for it based on consumption.  OpenStack is similar: An OpenStack deployment built for NFV workloads might have some different characteristics and interfaces exposed than one made as a public compute cloud.

 

What makes the Interop Challenge interesting is that it is complimentary to the work of the Interop Working Group in that it looks at interoperability in a slightly different light.  To date, the Interop Working Group has mostly focused its efforts on API-level interoperability.  It does so by ensuring that products bearing the OpenStack-Powered mark, pass a set of community-maintained Tempest tests to prove that they expose a set of capabilities (things like booting up a VM with the Nova v2 API or getting a list of available images using the Glance v2 API).  Products bearing the OpenStack-Powered logo are also required to use designated sections of upstream code, so consumers know they are getting community-developed code driving those capabilities.  While the Interop Working Group’s guidelines look primarily at the server side of things, the Interop Challenge seems to address a slightly different aspect of interoperability: workload portability.  Rather than testing a particular set of API’s, the Interop Challenge took a client-side approach by running a real workload against different clouds—in this case, a LAMP stack application with a load-balanced web server tier and a database backend tier, all deployed via Ansible.  The idea was to take a typical application with commonly-used deployment tools and prove that it “just works” across several different OpenStack clouds.

 

In other words, the guidelines produced by the Interop Working Group assure you that certain capabilities are available to end users (just as I can be reasonably confident that any hotel room I walk into will have a socket in the wall from which I can get electricity).  The Interop Challenge compliments that by looking at a more valid use case: it verifies that I can plug in my laptop and get some work done.

 

Along the way, participants also hoped to begin defining some best practices for making workloads more portable among OpenStack clouds to account for some of the differences that are a natural side effect of OpenStack’s flexibility.  For example, we found that the LAMP stack workload was more portable if we let the user specify certain attributes of the cloud he intended to use – such as the name of network the instances should be attached to, the image and flavor that should be used to boot up instances, and block device or network interface names that would be utilized by that image.   Even though we will only be showing one particular workload on stage, that one workload serves as a starting point to help flesh out more best practices in the future.

 

If you want to learn more about VMware’s work on interoperability or about VMware Integrated OpenStack, see us at the keynote or stop by our booth at the OpenStack, and if you’re ready to deploy OpenStack today, download it now and get started, or dare your IT team to try our VMware Integrated OpenStack Hands-On-Lab, no installation required.


*This article was written by Mark Voelker – OpenStack Architect at VMware

Tired of Waiting? Deploy OpenStack in 15 Minutes or Less

Watch this video to learn how to deploy OpenStack in Compact Management Mode in under 15 minutes


If you’re ready to try VIO, take it for a spin with the Hands on Labs that illustrates a step-by-step walkthrough of how to deploy OpenStack in Compact Management Mode in under fifteen minutes.

Deploying OpenStack challenges even the most seasoned, skilled IT organizations. With integrations, configurations, testing, re-testing, stress testing and more. For many, deploying OpenStack appears as an IT ‘Science Project’, wherein the light at the end of the tunnel dims with each passing month.

VMware Integrated OpenStack takes a different approach, reducing the redundancies and confusion of deploying OpenStack with the new Compact Management Control Pane. In the Compact Mode UI, wait minutes, not months. Enterprises seeking to evaluate OpenStack or those that are ready to build OpenStack clouds in the most cost efficient manner now have the ability to deploy in as little as 15 minutes quickly.

 

The architecture for VMware Integrated OpenStack is optimized to support compact architecture mode, reducing the need for support, overall resource costs, and the operational complexity keeping an enterprise from completing their OpenStack adoption.

The most recent update to VMware Integrated OpenStack focuses on the ease of use and the immense benefit to administrators – access and integration to the VMware ecosystem. The seamless integration of the family of VMware products allows the administrators to leverage their current VMware products to enhance their OpenStack, in combination with the ability to manage workloads through developer friendly OpenStack APIs.

The most recent update to VMware Integrated OpenStack focuses on the ease of use and the immense benefit to administrators – access and integration to the VMware ecosystem. The seamless integration of the family of VMware products allows the administrators to leverage their current VMware products to enhance their OpenStack, in combination with the ability to manage workloads through developer friendly OpenStack APIs.


If you’re ready to deploy OpenStack today, download it now and get started, or dare your IT team to try our VMware Integrated OpenStack Hands-On-Lab, no installation required.


You’ll be surprised what you can accomplish in 15 minutes

Introducing Senlin – a new tool for speedy, load-balanced OpenStack clustering

 Senlin is a new OpenStack project that provides a generic clustering service for OpenStack clouds. It’s capable of managing homogeneous objects exposed by other OpenStack components, including Nova, Heat, or Cinder, making it of interest to anyone using, or thinking of using, VMware Integrated OpenStack.

VMware OpenStack architect Mark Voelker, along with VMware colleague Xinhui Li and Qiming Teng of IBM, offer a helpful introduction to Senlin in their 2016 OpenStack Summit session, now viewable here.

 

Voelker opens by reviewing the generic requirements for OpenStack clustering, which include simple manageability, expandability on demand, load-balancing, customizability to real-life use cases, and extensibility.

 

OpenStack already offers limited cluster management capabilities through Heat’s orchestration service, he notes. But Heat’s mission is to orchestrate composite cloud apps using a declarative template format through an OpenStack-native API. While functions like auto-scaling, high availability, and load balancing are complimentary to that mission, having those functions all in a single service isn’t ideal.

“We thought maybe we should think about cluster management as a first class service that everything else could tie into,” Volker recalls, which is where Senlin comes in.

 

Teng then describes Senlin’s origin, which started as an effort to build within Heat, but soon moved to offload Heat’s autoscaling capabilities into a separate project that expanded OpenStack autoscaling offerings more comprehensively, becoming OpenStack’s first dedicated clustering service.

 

Senlin is designed to be scalable, load-balanced, highly-available, and manageable, Teng explains, before outlining its server architecture and detailing the operations it supports. “Senlin can manage almost any object,” he says. “It can be another server, a Heat stack, a single volume or floating IP protocol, we don’t care. We wanted to just build a foundational service allowing you to manage any type of resource.”

To end the session, Li offers a demo of how Senlin creates a resilient, auto-scaling cluster with both high availability and load balancing in as little as five minutes.

 

If you want to learn more about clustering for OpenStack clouds created with VMware Integrated OpenStack (VIO) you can find expert assistance at our product homepage. Also check out our Hands-on Lab, or try VIO for yourself by downloading and installing VMware Integrated OpenStack direct.

Next Generation Security Services in OpenStack

OpenStack is quickly and steadily positioning itself as a great Infrastructure-as-a-Service solution for the Enterprise. Originally conceived for that proverbial DevOps Cloud use case (and as a private alternative to AWS), the OpenStack framework has evolved to add rich Compute, Network and Storage services to fit several enterprise use cases. This evolution can be evidenced by the following initiatives:

1) Higher number of commercial distributions are available today, in addition to Managed Services and/or DIY OpenStack.
2) Diverse and expanded application and OS support vs. just Cloud-Native apps (a.k.a “pets vs. cattle”).
3) Advanced network connectivity options (routable Neutron topologies, dynamic routing support, etc.).
4) More storage options from traditional Enterprise storage vendors.

This is definitely great news, but one area where OpenStack has lagged behind is security. As of today, the only robust option for application security offered in OpenStack are Neutron Security Groups. The basic idea is that OpenStack Tenants can be in control of their own firewall rules, which are then applied and enforced in the dataplane by technologies like Linux IP Tables, OVS conntrack or, as it is the case with NSX vSphere, a stateful and scalable Distributed Firewall with vNIC-level resolution operating on each and every ESXi hypervisor.

Neutron Security Groups were designed for intra and inter-tier L3/L4 protection within the same application environment (the so-called “East-West” traffic).

In addition to Neutron Security Groups, projects like Firewall-as-a-Service (FWaaS) are also trying to onboard next generation security services onto these OpenStack Clouds and there is an interesting roadmap taking form on the horizon. The future looks great, but while OpenStack gets there, what are the implementation alternatives available today? How can Cloud Architects combine the benefits of the OpenStack framework and its appealing API consumption model, with security services that provide more insight and visibility into the application traffic? In other words, how can OpenStack Cloud admins offer next generation security right now, beyond the basic IP/TCP/UDP inspection offered in Neutron?

The answer is: With VMware NSX.

NSX natively supports and embeds an in-kernel redirection technology called Network Extensibility, or NetX. Third party ecosystem vendors write solutions against this extensibility model, following a rigorous validation process, to deliver elegant and seamless integrations. Once the solution is implemented, the notion is simply beautiful: leverage the NSX policy language, the same language that made NSX into the de facto solution for micro-segmentation, to “punt” interesting traffic toward the partner solution in question. This makes it possible to have protocol-level visibility for East-West traffic. This approach also allows you to create a firewall rule-set that looks like your business and not like your network. Application attributes such as VM name, OS type or any arbitrary vCenter object can be used to define said policies, irrespective of location, IP address or network topology. Once the partner solution receives the traffic, then the security admins can apply deep traffic inspection, visibility and monitoring techniques to it.

screen-shot-2

How does all of the above relate to OpenStack, you may be wondering? Well, the process is extremely simple:

1) First, integrate OpenStack and NSX using the various up-streamed Neutron plugins, or better yet, get out-of-the-box integration by deploying VMware’s OpenStack distro, VMware Integrated OpenStack (VIO), which is free for existing VMware customers.
2) Next, integrate NSX and the Partner Solution in question following documented configuration best practices. The list of active ecosystem partners can be found here.
3) Proceed to create an NSX Security policy to classify the application traffic by using the policy language mentioned above. This approach follows a wizard-based provisioning process to select which VMs will be subject to deep level inspection with Service Composer.
4) Use the Security Partner management console to create protocol-level security policies, such as application level firewalling, web reputation filtering, malware protection, antivirus protection and many more.
5) Launch Nova instances from OpenStack without a Neutron Security Group attached to them. This step is critical. Remember that we are delegating security management to the Security Admin, not the Tenant. Neutron Security Groups do not apply in this context.
6) Test and verify that your security policy is applied as designed.

screen-shot-1

This all assumes that the security admin has relinquished control of the firewall from the Tenant and that all security operations are controlled by the firewall team, which is a very common Enterprise model.

There are some Neutron enhancements in the works, such as Flow Classifier and Service Chaining, that are looking “split” the security consumption between admins and tenants, by promoting these redirection policies to the Neutron API layer, thus allowing a Tenant (or a Security admin) to selectively redirect traffic without bypassing Neutron itself. This implementation, however, is very basic when compared to what NSX can do natively. We are actively monitoring this work and studying opportunities for future integration. In the meantime, the approach outlined above can be used to get the best of both worlds: the APIs you want (OpenStack) with the infrastructure you trust (vSphere and NSX).

In the next blog post we will show an actual working integration example with one of our Security Technology Partners, Fortinet, using VIO and NSX NetX technology.

Author: Marcos Hernandez
Principal Engineer, CCIE#8283, VCIX, VCP-NV
hernandezm@vmware.com
@netvirt

Issues With Interoperability in OpenStack & How DefCore is Addressing Them

Interoperability is built into the founding conception of OpenStack. But as the platform has gained popularity, it’s also become ever more of a challenge.

“There’s a lot of different ways to consume OpenStack and it’s increasingly important that we figure out ways to make things interoperable across all those different methods of consumption,” notes VMware’s Mark Voelker in a presentation to the most recent OpenStack Summit titled: “ (view the slide set here).

 

Voelker, a VMware OpenStack architect and co-chair of the OpenStack Foundation’s DefCore Committee, shares the stage with OpenStack Foundation interoperability engineer Chris Hoge. Together they offer an overview of the integration challenges OpenStack faces today, and point to the work DefCore is doing to help deliver on the OpenStack vision. For anyone working, or planning to work, with VMware Integrated OpenStack (VIO), the talk is a great backgrounder on what’s being done to ensure that VIO integrates as well with non-VMware OpenStack technologies as it does with VMware’s own.

Hoge begins by outlining DefCore’s origins as a working group founded to fulfill the OpenStack Foundation mandate for a “faithful implementation test suite to ensure compatibility and interoperability for products.” DefCore has since issued five guidelines that products can now be certified as following, allowing them to carry the logo.

After explaining what it takes to meet the DefCore guidelines, Hoge reviews issues that remain unresolved. “The good news about OpenStack is that it’s incredibly flexible. There are any number of ways you can configure your OpenStack Cloud. You have your choice of hypervisors, storage drivers, network drivers – it’s a really powerful platform,” he observes. But that very richness and flexibility also makes it harder to ensure that two instances of OpenStack will work well together, he explains.

 

Among areas with issues are image operations, networking, policy and configuration discovery, API iteration, provability, and project documentation, reports Voelker. Discoverability and how to map capabilities to APIs are also a major concern, as is lack of awareness about DefCore’s guidelines. “There’s still some confusion about what kind of things people should be taking into account when they are making technical choices,” Hoge adds.

The OpenStack Foundation is therefore working to raise the profile of interoperability as requirement and awareness of the meaning behind the “OpenStack Powered” logo. DefCore itself is interacting closely with developers and vendors in the community to address the integration challenges they’ve identified and enforce a measurable standard on new OpenStack contributions.

 

“Awareness is half the battle,” notes Voelker, before he and Hoge outline the conversations DefCore is currently leading, outcomes they’ve already achieved, and what DefCore is doing next – watch for a report on top interoperability issues soon, more work on testing, and a discussion on new guidelines for NFV-ready clouds.

 

If you are interested in how VMware Integrated OpenStack (VIO) conforms with DefCore standards, you can more find information and experts to contact on our product homepage. You can also check out our Hands-on Lab, or try VIO for yourself and download and install VMware Integrated OpenStack direct.

VMware Integrated OpenStack 3.0 Announced. See What’s In It

On 9/30/2016, VMware announced VMware Integrated OpenStack 3.0 at VMWorld in Las Vegas. We are truly excited about our latest OpenStack distribution that gives our customers the new features and enhancements included in the latest Mitaka release, an optimized management control plane architecture, and the ability leverage existing workloads in your OpenStack cloud.

VIO 3.0 is available for download here(Login may be required).

New features include:

  • OpenStack Mitaka Support
    VMware Integrated OpenStack 3.0 customers can leverage the great features and enhancements in the latest OpenStack release. Mitaka addresses manageability, scalability, and a greater user experience. To learn more about the Mitaka release, visit the OpenStack.org site at https://www.openstack.org/software/mitaka/
  • Easily Import Existing Workloads
    The ability to now directly import vSphere VMs into OpenStack and run critical Day 2 operations against them via OpenStack APIs enables you to quickly move existing development project or production workloads to the OpenStack Framework.
  • Compact Management Control Plane
    Building on enhancements from previous releases, organizations looking to evaluate OpenStack or to build OpenStack clouds for branch locations quickly and cost effectively can easily deploy in as little as 15 minutes. The VMware Integrated OpenStack 3.0 architecture has been optimized to support a compact architecture mode that dramatically reduces the infrastructure footprint saving resource costs and overall operational complexity.

If you are at VMWorld2016 in Las Vegas, we invite you to attend the following sessions to hear how our customers are using VMware Integrated OpenStack and learn more details about this great upcoming release.

VMware Integrated OpenStack 3.0

VMWorld 2016 VMware Integrated OpenStack Sessions:

  • MGT7752 – OpenStack in the Real World: VMware Integrated OpenStack 3.0 Customer Panel
  • MGT7671 – What’s New in VMware Integrated OpenStack Version 3.0!
  • NET8109 – Amadeus’s Journey Building a Software-Defined Data Center with VMware Integrated OpenStack and NSX
  • NET8343 – OpenStack Networking in the Enterprise: Real-Life Use Cases
  • NET8832 – The Role of VIO and NSX in Virtualizing the Telecoms Infrastructure
  • SEC9618-SPO – Deep Dive: Extending L4-L7 Security Controls for VMware NSX and VMware Integrated OpenStack (VIO) Environments with Fortinet Next Generation

Try VMware Integrated OpenStack Today

Sign up to be notified when VMWare Integrated OpenStack 3.0 is available.