Home > Blogs > VMware Consulting Blog > Tag Archives: PSC

Tag Archives: PSC

How to Change the Package Signing Certificate of a vRealize Orchestrator Appliance (7.0.1)


By Spas Kaloferov

In this post, we will take a look at how to change the Package Signing Certificate (PSC) in a vRealize Orchestrator appliance.

To change the PSC, let’s review a few steps first:

ŸIssue a certificate to meet the company’s requirements. The certificate must have:

  • ŸDigital Signature and Key Encipherment Key Usage attributes
  • ŸServer Authentication Extended Key Usage attribute
  • ŸAssurance that the certificate has a private key

ŸUse the keytool to:

  • ŸCreate new keystore; the keystore type must be JCEKS.
  • ŸImport the certificate into the keystore.
  • ŸChange the alias of the certificate to _dunesrsa_alias_.
  • ŸGenerate a Security Key and place it in the keystore.
  • ŸChange the alias of the Security Key to _dunessk_alias_.

ŸUse the Control Center interface to:

  • Ÿ Import the keystore you created.
  • Ÿ Restart the Orchestrator server.

Here is a screenshot of the original PSC certificate:

SKaloferov_PSC Certificate

Changing the Package Signing Certificate

First, you must obtain a PFX Certificate Package (containing your PSC Certificate) issued from the Certificate Authority (CA).

SKaloferov_Package Signing Certificate

SKaloferov_Package Signing Certificate 2

SKaloferov_Certificate Path

Note that the certificate has the Digital Signature and Key_Encipherment Key Usage attributes as shown above. It also has the Server Authentication Extended Key Usage attribute.

Copy the PFX certificate package to any Linux appliance.

SKaloferov_Certificate Signing vRO

Using the OpenSSL tool, enter the following commands to create a new keystore and import the PFX certificate package at the same time.

keytool -importkeystore -srckeystore "/etc/vco/app-server/security/rui.pfx" -srcstoretype pkcs12 -srcstorepass "dunesdunes" -deststoretype jceks -destkeystore "/etc/vco/app-server/security/psckeystore" -deststorepass "dunesdunes"

SKaloferov_PFX Certificate

Enter the following command to change the alias of the certificate:

keytool -changealias -alias rui -destalias _dunesrsa_alias_ -keystore "/etc/vco/app-server/security/psckeystore" -storetype jceks -storepass "dunesdunes"

Next, enter this command to generate a security key:

keytool -genseckey -alias _dunessk_alias_ -keyalg DES -keysize 56 -keypass "dunesdunes" -storetype jceks -keystore "/etc/vco/app-server/security/psckeystore" -storepass "dunesdunes"

Notice I’ve used the DES algorithm and 56 key size in the above command, but you can also use the 3DES (DESese) algorithm and 168 key size.

Enter the following command to list the contents of the store.

keytool -list -storetype jceks -keystore "/etc/vco/app-server/security/psckeystore"

Copy the keystore file to your Windows machine.

Open Control Center and navigate to Certificates > Package Signing Certificate.

Click Import > Import from JavaKeyStore file.

Browse the keystore file, and enter the password.

SKaloferov_Current Certificate

Click Import to import the certificate.

Go to Startup Options and restart the Orchestrator service.

Navigate back to Certificates > Package Signing Certificate.

You should now see the new certificate.

SKaloferov_New Certificate

Open your vRealize Orchestrator appliance client, and navigate to Tools > Certificate Manager.


You should now see the certificate shown below. The common name can differ, but if you compare the thumbprints, it should match the private key entry in your keystore.


I hope this post was valuable in helping you learn how to change the Package Signing Certificate in a vRealize Orchestrator appliance. Stay tuned for my next post!

Spas Kaloferov is an acting Solutions Architect member of Professional Services Engineering (PSE) for the Software-Defined Datacenter (SDDC) – a part of the Global Technical & Professional Solutions (GTPS) team. Prior to VMware, Kaloferov focused on cloud computing solutions.

Configuring NSX-v Load Balancer for use with vSphere Platform Services Controller (PSC) 6.0

Romain DeckerBy Romain Decker

VMware introduced a new component with vSphere 6, the Platform Services Controller (PSC). Coupled with vCenter, the PSC provides several core services, such as Certificate Authority, License service and Single Sign-On (SSO).

Multiple external PSCs can be deployed serving one (or more) service, such as vCenter Server, Site Recovery Manager or vRealize Automation. When deploying the Platform Services Controller for multiple services, availability of the Platform Services Controller must be considered. In some cases, having more than one PSC deployed in a highly available architecture is recommended. When configured in high availability (HA) mode, the PSC instances replicate state information between each other, and the external products (vCenter Server for example) interact with the PSCs through a load balancer.

This post covers the configuration of an HA PSC deployment with the benefits of using NSX-v 6.2 load balancing feature.

Due to the relationship between vCenter Server and NSX Manager, two different scenarios emerge:

  • Scenario A where both PSC nodes are deployed from an existing management vCenter. In this situation, the management vCenter is coupled with NSX which will configure the Edge load balancer. There are no dependencies between the vCenter Server(s) that will use the PSC in HA mode and NSX itself.
  • Scenario B where there is no existing vCenter infrastructure (and thus no existing NSX deployment) when the first PSC is deployed. This is a classic “chicken and egg” situation, as the NSX Manager that is actually responsible for load balancing the PSC in HA mode is also connected to the vCenter Server that use the PSC virtual IP.

While scenario A is straightforward, you need to respect a specific order for scenario B to prevent any loss of connection to the Web client during the procedure. The solution is to deploy a temporary PSC in a temporary SSO site to do the load balancer configuration, and to repoint the vCenter Server to the PSC virtual IP at the end. Both path are summarized in the workflow below.

RDecker PSC Map


NSX Edge supports two deployment modes: one-arm mode and inline mode (also referred to as transparent mode). While inline mode is also possible, NSX load balancer will be deployed in a one-arm mode in our situation, as this model is more flexible and because we don’t require full visibility into the original client IP address.

Description of the environment:

  • Software versions: VMware vCenter Server 6.0 U1 Appliance, ESXi 6.0 U1, NSX-v 6.2
  • NSX Edge Services Gateway in one-arm mode
  • Active/Passive configuration
  • VLAN-backed portgroup (distributed portgroup on DVS)
  • General PSC/vCenter and NSX prerequisites validated (NTP, DNS, resources, etc.)

To offer SSO in HA mode, two PSC servers have to be installed with NSX load balancing them in active/standby mode. PSC in Active/Active mode is currently not supported by PSC.

The way SSO operates, it is not possible to configure it as active/active. The workaround for the NSX configuration is to use an application rule and to configure two different pools (with one PSC instance in each pool). The application rule will send all traffic to the first pool as long as the pool is up, and will switch to the secondary pool if the first PSC is down.

The following is a representation of the NSX-v and PSC logical design.



Each step number refers to the above workflow diagram. You can take snapshots at regular intervals to be able to rollback in case of a problem.

Step 1: Deploy infrastructure

This first step consists of deploying the required vCenter infrastructure before starting the configuration.

A. For scenario A: Deploy two PSC nodes in the same SSO site.

B. For scenario B:

  1. Deploy a first standalone Platform Services Controller (PSC-00a). This PSC will be temporary used during the configuration.
  2. Deploy a vCenter instance against the PSC-00a just deployed.
  3. Deploy NSX Manager and connect it to the vCenter.
  4. Deploy two other Platform Services Controllers in the same SSO domain (PSC-01a and PSC-02a) but in a new site. Note: vCenter will still be pointing to PSC-00a at this stage. Use the following options:
    RDecker PSC NSX Setup 1RDecker PSC NSX Setup 2

Step 2 (both scenarios): Configure both PSCs as an HA pair (up to step D in KB 2113315).

Now that all required external Platform Services Controller appliances are deployed, it’s time to configure high availability.

A. PSC pairing

  1. Download the PSC high availability configuration scripts from the Download vSphere page and extract the content to /ha on both PSC-01a and PSC-02a nodes. Note: Use the KB 2107727 to enable the Bash shell in order to copy files in SCP into the appliances.
  2. Run the following command on the first PSC node:
    python gen-lb-cert.py --primary-node --lb-fqdn=load_balanced_fqdn --password=<yourpassword>

    Note: The load_balanced_fqdn parameter is the FQDN of the PSC Virtual IP of the load balancer. If you don’t specify the option –password option, the default password will be « changeme ».
    For example:

    python gen-lb-cert.py --primary-node --lb-fqdn=psc-vip.sddc.lab --password=brucewayneisbatman
  3. On the PSC-01a node, copy the content of the directory /etc/vmware-sso/keys to /ha/keys (a new directory that needs to be created).
  4. Copy the content of the /ha folder from the PSC-01a node to the /ha folder on the additional PSC-02a node (including the keys copied in the step before).
  5. Run the following command on the PSC-02a node:
python gen-lb-cert.py --secondary-node --lb-fqdn=load_balanced_fqdn --lb-cert-folder=/ha --sso-serversign-folder=/ha/keys

Note: The load_balanced_fqdn parameter is the FQDN of the load balancer address (or VIP).

For example:

python gen-lb-cert.py --secondary-node --lb-fqdn=psc-vip.sddc.lab --lb-cert-folder=/ha --sso-serversign-folder=/ha/keys

Note: If you’re following the KB 2113315 don’t forget to stop the configuration here (end of section C in the KB).

Step 3: NSX configuration

An NSX edge device must be deployed and configured for networking in the same subnet as the PSC nodes, with at least one interface for configuring the virtual IP.

A. Importing certificates

Enter the configuration of the NSX edge services gateway on which to configure the load balancing service for the PSC, and add a new certificate in the Settings > Certificates menu (under the Manage tab). Use the content of the previously generated /ha/lb.crt file as the load balancer certificate and the content of the /ha/lb_rsa.key file as the private key.

RDecker PSC Certificate Setup

B. General configuration

Enable the load balancer service and logging under the global configuration menu of the load balancer tab.

RDecker PSC Web Client

C. Application profile creation

An application profile defines the behavior of a particular type of network traffic. Two application profiles have to be created: one for HTTPS protocol and one for other TCP protocols.

Parameters HTTPS application profile TCP application profile
Name psc-https-profile psc-tcp-profile
Enable Pool Side SSL Yes N/A
Configure Service Certificate Yes N/A

Note: The other parameters shall be left with their default values.

RDecker PSC Edge

D. Creating pools

The NSX load balancer virtual server type HTTP/HTTPS provide web protocol sanity check for their backend servers pool. However, we do not want that sanity check their backend servers pool for the TCP virtual server. For that reason, different pools must be created for the PSC HTTPS virtual IP and TCP virtual IP.

Four pools have to be created: two different pools for each virtual server (with one PSC instance per pool). An application rule will be defined to switch between them in case of a failure: traffic will be send to the first pool as long as the pool is up, and will switch to the secondary pool if the first PSC is down.

Parameters Pool 1 Pool 2 Pool 3 Pool 4
Name pool_psc-01a-http pool_psc-02a-http pool_psc-01a-tcp pool_psc-02a-tcp
Monitors default_tcp_monitor default_tcp_monitor default_tcp_monitor default_tcp_monitor
Members psc-01a psc-02a psc-01a psc-02a
Monitor Port 443 443 443 443

Note: while you could use a custom HTTPS healthcheck, I selected the default TCP Monitor in this example.

RDecker PSC Edge 2 (Pools)

E. Creating application rules

This application rule will contain the logic that will perform the failover between the pools (for each virtual server) corresponding to the active/passive behavior of the PSC high availability mode. The ACL will check if the primary PSC is up; if the first pool is not up the rule will switch to the secondary pool.

The first application rule will be used by the HTTPS virtual server to switch between the corresponding pools for the HTTPS backend servers pool.

# Detect if pool "pool_psc-01a-http" is still UP
acl pool_psc-01a-http_down nbsrv(pool_psc-01a-http) eq 0
# Use pool " pool_psc-02a-http " if "pool_psc-01a-http" is dead
use_backend pool_psc-02a-http if pool_psc-01a-http_down

The second application rule will be used by the TCP virtual server to switch between the corresponding pools for the TCP backend servers pool.

# Detect if pool "pool_psc-01a-tcp" is still UP
acl pool_psc-01a-tcp_down nbsrv(pool_psc-01a-tcp) eq 0
# Use pool " pool_psc-02a-tcp " if "pool_psc-01a-tcp" is dead
use_backend pool_psc-02a-tcp if pool_psc-01a-tcp_down

RDecker PSC Edge 3 (app rules)

F. Configuring virtual servers

Two virtual servers have to be created: one for HTTPS protocol and one for the other TCP protocols.

Parameters HTTPS Virtual Server TCP Virtual Server
Application Profile psc-https-profile psc-tcp-profile
Name psc-https-vip psc-tcp-vip
IP Address IP Address corresponding to the PSC virtual IP
Protocol HTTPS TCP
Port 443 389,636,2012,2014,2020*
Default Pool pool_psc-01a-http pool_psc-01a-tcp
Application Rules psc-failover-apprule-http psc-failover-apprule-tcp

* Although this procedure is for a fresh install, you could target the same architecture with SSO 5.5 being upgraded to PSC. If you plan to upgrade from SSO 5.5 HA, you must add the legacy SSO port 7444 to the list of ports in the TCP virtual server.

RDecker PSC Edge 4 (VIP)

Step 4 (both scenarios)

Now it’s time to finish the PSC HA configuration (step E of KB 2113315). Update the endpoint URLs on PSC with the load_balanced_fqdn by running this command on the first PSC node.

python lstoolHA.py --hostname=psc_1_fqdn --lb-fqdn=load_balanced_fqdn --lb-cert-folder=/ha --user=Administrator@vsphere.local

Note: psc_1_fqdn is the FQDN of the first PSC-01a node and load_balanced_fqdn is the FQDN of the load balancer address (or VIP).

For example:

python lstoolHA.py --hostname=psc-01a.sddc.lab --lb-fqdn=psc-vip.sddc.lab --lb-cert-folder=/ha --user=Administrator@vsphere.local

Step 5

A. Scenario A: Deploy any new production vCenter Server or other components (such as vRA) against the PSC Virtual IP and enjoy!

B. Scenario B

The situation is the following: The vCenter is currently still pointing to the first external PSC instance (PSC-00a), and two other PSC instances are configured in HA mode, but are not used.

RDecker Common SSO Domain vSphere

Introduced in vSphere 6.0 Update 1, it is now possible to move a vCenter Server between SSO sites within a vSphere domain (see KB 2131191 for more information). In our situation, we have to re-point the existing vCenter that is currently connected to the external PSC-00a to the PSC Virtual IP:

  1. Download and replace the cmsso-util file on your vCenter Server using the actions described in the KB 2113911.
  2. Re-point the vCenter Server Appliance to the PSC virtual IP to the final site by running this command:
/bin/cmsso-util repoint --repoint-psc load_balanced_fqdn

Note: The load_balanced_fqdn parameter is the FQDN of the load balancer address (or VIP).

For example:

/bin/cmsso-util repoint --repoint-psc psc-vip.sddc.lab

Note: This command will also restart vCenter services.

  1. Move the vCenter services registration to the new SSO site. When a vCenter Server is installed, it creates service registrations that it issues to start the vCenter Server services. These service registrations are written to a specific site of the Platform Services Controller (PSC) that was used during the installation. Use the following command to update the vCenter Server services registrations (parameters will be asked at the prompt).
/bin/cmsso-util move-services

After the command, you end up with the following.

RDecker PSC Common SSO Domain vSphere 2

    1. Log in to your vCenter Server instance by using the vSphere Web Client to verify that the vCenter Server is up and running and can be managed.

RDecker PSC Web Client 2

In the context of the scenario B, you can always re-point to the previous PSC-00a if you cannot log, or if you have an error message. When you have confirmed that everything is working, you can remove the temporary PSC (PSC-00a) from the SSO domain with this command (KB 2106736​):

cmsso-util unregister --node-pnid psc-00a.sddc.lab --username administrator@vsphere.local --passwd VMware1!

Finally, you can safely decommission PSC-00a.

RDecker PSC Common SSO Domain vSphere 3

Note: If your NSX Manager was configured with Lookup Service, you can update it with the PSC virtual IP.


Romain Decker is a Senior Solutions Architect member of Professional Services Engineering (PSE) for the Software-Defined Datacenter (SDDC) portfolio – a part of the Global Technical & Professional Solutions (GTPS) team.