Home > Blogs > VMware Consulting Blog > Tag Archives: NSX Service Composer

Tag Archives: NSX Service Composer

Automating Security Policy Enforcement with NSX Service Composer

Romain DeckerBy Romain Decker

Over the past decade, IT organizations have gained significant benefits as a direct result of compute virtualization, permitting a reduction in physical complexity and an increase in operational efficiency. It also allowed for dynamic re-purposing of underlying resources to quickly and optimally meet the needs of an increasingly dynamic business.

In dynamic cloud data centers, application workloads are provisioned, moved and decommissioned on demand. In legacy network operating models, network provisioning is slow and workload mobility is limited. While compute virtualization has become the new norm, network and security models remained unchanged in data centers.

NSX is VMware’s solution to virtualize network and security for your software-defined data center. NSX network virtualization decouples the network from hardware and places it into a software abstraction layer, thus delivering for networking what VMware has already delivered for compute and storage.

Inside NSX, the Service Composer is a built-in tool that defines a new model for consuming network and security services; it allows you to provision and assign firewall policies and security services to applications in real time in a virtual infrastructure. Security policies are assigned to groups of virtual machines, and the policy is automatically applied to new virtual machines as they are added to the group.

RDecker 1

From a practical point of view, NSX Service Composer is a configuration interface that gives administrators a consistent and centralized way to provision, apply and automate network security services like anti-virus/malware protection, IPS, DLP, firewall rules, etc. Those services can be available natively in NSX or enhanced by third-party solutions.

With NSX Service Composer, security services can be consumed more efficiently in the software-defined data center. Security can be easily organized by dissociating the assets you want to protect from the policies that define how you want to protect them.

RDecker 2

Security Groups

A security group is a powerful construct that allows static or dynamic grouping based on inclusion and exclusion of objects such as virtual machines, vNICs, vSphere clusters, logical switches, and so on.

If a security group is static, the protected assets are a limited set of specific objects, whereas dynamic membership of a security group can be defined by one or multiple criteria, like vCenter containers (data centers, port groups and clusters), security tags, Active Directory groups, regular expressions on virtual machine names, and so on. When all criteria are met, virtual machines are immediately moved to the security group automatically.

In the example below, any virtual machine with a name containing “web”―AND running in “Capacity Cluster A”―will belong to this security group.

RDecker 3

 

Security group considerations:

  • Security groups can have multiple security policies assigned to them.
  • A virtual machine can live in multiple security groups at the same time.
  • Security groups can be nested inside other security groups.
  • You can include AND exclude objects from security groups.
  • Security group membership can change constantly.
  • If a virtual machine belongs to multiple security groups, the services applied to it depend on the precedence of the security policy mapped to the security groups.

Security Policies

A security policy is a collection of security services and/or firewall rules. It can contain the following:

  • Guest Introspection services (applies to virtual machines) – Data Security or third-party solution provider services such as anti-virus or vulnerability management services.
  • Distributed Firewall rules (applies to vNIC) – Rules that define the traffic to be allowed to/from/within the security group.
  • Network introspection services (applies to virtual machines) – Services that monitor your network such as IPS and network forensics.

Security services such as vulnerability management, IDS/IPS or next-generation firewalling can be inserted into the traffic flow and chained together.

Security policies are applied according to their respective weight: a security policy with a higher weight has a higher priority. By default, a new policy is assigned the highest weight so it is at the top of the table (but you can manually modify the default suggested weight to change the order).

Multiple security policies may be applied to a virtual machine because either (1) the security group that contains the virtual machine is associated with multiple policies, or, (2) the virtual machine is part of multiple security groups associated with different policies. If there is a conflict between services grouped with each policy, the weight of the policies determine the services that will be applied to the virtual machine.

For example: If policy A blocks incoming HTTP and has a weight value of 1,000, while policy B allows incoming HTTP with a weight value of 2,000, incoming HTTP traffic will be allowed because policy B has a higher weight.

The mapping between security groups and security policies results in a running configuration that is immediately enforced. The relationships between all objects can be observed in the Service Composer Canvas.

RDecker 4

 

Each block represents a security group with its associated security policies, Guest Introspection services, firewall rules, network introspection services, and the virtual machines belonging to the group or included security groups.

NSX Service Composer offers a way to automate the consumption of security services and their mapping to virtual machines using a logical policy, and it makes your life easier because you can rely on it to manage your firewall policies; security groups allow you to statically or dynamically include or exclude objects into a container, which can be used as a source or destination in a firewall rule.

Firewall rules defined in security policies are automatically adapted (based on the association between security groups and policies) and integrated into NSX Distributed Firewall (or any third-party firewall). As virtual machines are automatically added and removed from security groups during their lifecycle, the corresponding firewall rules are enforced when needed. With this association, your imagination is your only limit!

In the screenshot below, firewall rules are applied via security policies to a three-tier application; since the security group membership is dynamic, there is no need to modify firewall rules when virtual machines are added to the application (in order to scale-out, for example).

RDecker 5

 

Provision, Apply, Automate

Service Composer is one of the most powerful features of NSX: it simplifies the application of security services to virtual machines within the software-defined data center, and allows administrators to have more control over―and visibility into―security.

Service Composer accomplishes this by providing a three-step workflow:

      • Provision the services to be applied:
        • Registering the third-party service with NSX Manager (if you are not using the out-of-the-box security services available)
        • Deploying the service by installing if necessary the components required for that service to operate into each ESXi host (“Networking & Security > Installation > Service Deployments” tab)
    • Apply and visualize the security services to defined containers by applying the security policies to security groups.
    • Automate the application of these services by defining rules and criteria that specify the circumstances under which each service will be applied to a given virtual machine.

Possibilities around the NSX Service Composer are tremendous; you can create an almost infinite number of associations between security groups and security policies to efficiently automate the how security services will be consumed in the software-defined data center.

You can, for example, combine service composer capabilities and VMware vRealize Automation Center to achieve secure, automated, on-demand micro-segmentation. Another example is a quarantine workflow, where― after a virus detection―a virtual machine is automatically and immediately moved to a quarantine security group, whose security policies can take action, like remediation, strengthened firewall rules and traffic steering.


Romain Decker is a Technical Solutions Architect in the Professional Services Engineering team and is based in France.

The Secret to Getting Security to Say ‘Yes’

By Richard Rees, Security & Compliance Architect, VMware Professional Services

My post last week about the NSA and hybrid cloud I shared an important equation from the security world: Trust = Visibility + Control. In other words, if I’m going to trust a third party with my data assets, I need to have more visibility to make me comfortable with less control.

Today I want to highlight the different requirements that security, IT, and business have for building trust, and how improved visibility can help all three build a more successful working relationship.

Let’s start with security, the most risk-averse, and a mindset I have the best insight into. We know that business and IT are frustrated when we say no, but they need to understand our thought process. If security says “no,” and something bad happens, we get to say “I told you so.” If we say “no,” and nothing bad happens, we’re still ok. But every time we say “yes” we take a risk on getting burned. And we’ve been burned plenty before.

The business side has completely different requirements for trust. To them, risk is just the cost of doing business. You acquire a company, it doesn’t perform as you expected, you sell it off again. That’s that. Meanwhile, IT is somewhere in the middle, focused on efficiency and service delivery to the business.

When these different risk tolerances are competing (instead of collaborating), new problems arise, like the precipitous growth of “shadow IT” and the security problems it poses. Continue reading