Multi-Tenancy with VMware Cloud Director services
On the VMware Cloud Provider Platform

A Natural Partnership

For Cloud and Service Providers
Table of Contents

VMware Cloud Director service on VMware Cloud on AWS SDDC .. 2
VMware Cloud Director Service Architecture and Multi-tenancy .. 3
Provider Workflow .. 5
 Configure the external network .. 5
 Create an edge gateway ... 6
 Request a public IP address from AWS .. 8
 Create a NAT rule for inbound customer workload access .. 9
Tenant Network and Security Operations ... 9
 Create an Organization VDC Network ... 9
 Configure Services: ... 10
 NAT Rules .. 11
 Edge Firewall Rules ... 11
Design Considerations for Multi-Tenancy in VMware Cloud Director service 13
Conclusion .. 13

VMware Cloud Director service on VMware Cloud on AWS SDDC

Cloud Director service’s (CDS) Initial Availability provides services to customers on VMware Cloud (VMC) on AWS and leverages Software-Defined Data Center (SDDC) on AWS to provision networking and security services. The primary use cases of VMware Cloud Director service are Asset light geo expansion, Data Center expansion, and Multi-tenancy on VMware Cloud on AWS. The SDDC infrastructure on VMC on AWS consists of vCenter Server, three NSX Manager appliances, and two NSX Edge appliances (Management and Compute Gateways). Using VMware Cloud Director service, the provider can deploy multiple Tier1 gateways in SDDC. This feature allows CDS to reduce the footprint on VMware Cloud on AWS. CDS also empowers its customers to extend self-service cloud services outside their data center while leveraging familiar technologies. FIGURE 1 describes how deploying multiple
Tier1 Gateways allows providers to configure secure, isolated, consistent, and efficient multi-tenant environments using the VMware Cloud Director services.

FIGURE 1: Cloud Director Service leveraging Multi-Gateway infrastructure on VMware Cloud SDDC on AWS

VMware Cloud Director Service Architecture and Multi-tenancy

VMware Cloud Director service is a containerized Software as a Service implementation of VMware Cloud Director (VCD). CDS integrates with VMware Cloud on AWS and provides a Cloud Director experience utilizing VMware on AWS infrastructure. To integrate and manage the CDS, the provider can perform the following actions through VMware Cloud Console for CDS instance. The providers can access VCD via Cloud Service Portal and Cloud provider hub.

- Create Instance
- Reset administrator password
- Create Support Bundle
- Associate a VMC SDDC
- Delete Instance

After the association between CDS and SDDC is complete, the provider can view SDDC’s vSphere and NSX resources from the VCD provider portal. The customer accesses VMware Cloud Director (VCD) tenant portal to manage tenant applications and services. The customers can also consume API Explorer to perform the same operations using VCD APIs. FIGURE 2 shows the components of SDDC used by the VMware Cloud Director service.
A freshly deployed SDDC on AWS has three gateway types described in the table below. The provider can access these gateways using the Networking and Security tab on SDDC on VMware Cloud console on AWS.

<table>
<thead>
<tr>
<th>NETWORKING CONSTRUCT</th>
<th>DESCRIPTION AND FUNCTION</th>
</tr>
</thead>
<tbody>
<tr>
<td>Internet Gateway</td>
<td>• The connectivity to AWS VPC, Internet, or Direct Connect passes through the internet</td>
</tr>
<tr>
<td></td>
<td>gateway which is backed by an NSX-T Tier-0 Gateway.</td>
</tr>
<tr>
<td>Management Gateway (MGW)</td>
<td>• This gateway provides north-south connectivity for the management appliances such as</td>
</tr>
<tr>
<td></td>
<td>vCenter Server, NSX, HCX, vRealize operations, running in the SDDC.</td>
</tr>
<tr>
<td>Compute Gateway (CGW)</td>
<td>• The default compute gateway provides north-south connectivity for the services, which</td>
</tr>
<tr>
<td></td>
<td>are not tenant workloads, running in the SDDC by the provider.</td>
</tr>
</tbody>
</table>
The provider can deploy a new type of gateway called a Tier1 gateway through the Cloud Director provider portal. The Tier1 gateway is a unique edge gateway per customer. When the provider creates an additional edge gateway, each edge gateway creates a separate routing domain and organization network and allows customers to have an isolated and secure environment. FIGURE 2 shows example IP networks where Tenant A and Tenant B use the same IP network in the organization VDC network.

<table>
<thead>
<tr>
<th>VMWARE CLOUD DIRECTOR SERVICE COMPONENTS ON CLOUD DIRECTOR PORTAL</th>
</tr>
</thead>
<tbody>
<tr>
<td>NETWORKING CONSTRUCT</td>
</tr>
<tr>
<td>Tier1 Gateway (Edge Gateway)</td>
</tr>
<tr>
<td>External Network</td>
</tr>
<tr>
<td></td>
</tr>
<tr>
<td>Organization VDC Network</td>
</tr>
<tr>
<td></td>
</tr>
</tbody>
</table>

Provider Workflow

A provider admin must perform some configuration before a customer can get all the benefits from VMware Cloud Director service for VMware Cloud on AWS.

Organization setup is out of the scope of this whitepaper; more information on this aspect of the configuration is available in the [VMware Cloud Director Service provider Admin Portal Guide](#).

To allow a tenant admin to access self-service networking and security services from the tenant portal, the provider must perform the following steps from Cloud Director service provider portal:

Configure the external network

This is a pre-requisite step for creating an edge gateway. An external network is created once the VMware Cloud Director service’s association is complete with the SDDC on VMC on AWS. The import of external network happens with a subnet from the 169.254.0.0/16 range: this network specification can be deleted and replaced with the network of choice. An Edge gateway must be assigned at least one unique external IP. FIGUREs 3 and 4 show the creation of an External network using the VCD provider portal.
Building a Cloud Platform TCO – On the VMware Cloud Provider Platform

FIGURE 3: Update External Network range of provider’s choice.

The provider admin can also add additional network ranges if required.

FIGURE 4: Edit or add additional IP network range.

Create an edge gateway
Once the external network is configured, the provider admin can create a unique edge gateway per customer.

FIGURE 5: Create a new edge gateway per tenant VDC

After providing a name and the Organization VDC for the edge, the next step is to provide the IP range from the external network’s available to which the new edge gateway connects in a VMware Cloud Director service on VMC on AWS.
Create Edge Gateway

1. Organization VDC
2. General
3. External Networks
4. Edge Cluster
5. Allocated IPs
6. Ready to Complete

External Networks

<table>
<thead>
<tr>
<th>Name</th>
<th>IP Pool Usage</th>
</tr>
</thead>
<tbody>
<tr>
<td>VMC External Network TP..</td>
<td>14.29% (Total: 98)</td>
</tr>
<tr>
<td>Subnets</td>
<td>172.16.2.1/24</td>
</tr>
</tbody>
</table>

FIGURE 6: Create a new Edge gateway and allocate IP range for customer.

An Edge Cluster is a logical construct driving a placement decision of oVDC Edge Gateways. The Edge Cluster is created by the provider administrator and then assigned to Organization VDCs as a primary or secondary instance to the Org VDC Network Profile. In the Edge Cluster selection screen, select the “Use the edge cluster of the external network” option, and click Next.

FIGURE 7: Select Edge Cluster of External Network.

The provider admin allocates one or multiple IP addresses of the external network to the edge gateway. When an IP is allocated from the external network to an edge gateway, it is reserved for the edge gateway and removed from the available IPs. This workflow prevents the provider to assign the same IP address or range of IPs to multiple tenants.
FIGURE 8: Allocate IPs from available External IPs from the IP pool

After configuring the external network, deployment of a new edge gateway and managing services requires identical steps in the multi-tenant environment from the provider VMware Cloud Director portal. Customers can initiate tenant network operations from this point.

Providers can use VMware Cloud console when the tenant requests one or more public IP addresses. A SNAT Public IP is available for all workloads to connect to the internet. However, for inbound access to the workload from the internet a public IP address is required in customer organization,

Request a public IP address from AWS
The provider can request a new IP address with one click from the “Networking & Security” section in the SDDC in the VMC console. Customers can request multiple public IP addresses.

FIGURE 9: Request a Public IP address from VMware Cloud console
Create a NAT rule for inbound customer workload access

The provider needs to map the requested public IP address to the customer’s external IP to complete the inbound connectivity. The tenant can provide external IP by following two easy steps:

1. Configure an IP address on Virtual Machine with an organization network IP.
2. Create a NAT rule to map the Virtual Machine’s IP with an available external network IP, allocated to the tenant. NAT rule creation is covered in the tenant operations section.

FIGURE 10: Create a 1:1 NAT rule for inbound workload access

Tenant Network and Security Operations

The tenant admin can self-provision network and security services such as Organization VDC network, DHCP service, NAT rules, Edge Firewall, define Static IPs, and more from the CDs tenant portal. Since edge gateway provides the services per customer, multi-tenancy is isolated and secure from a network point of view. provider admin can also perform the tenant operations on behalf of the tenant using the CDs provider portal.

Create an Organization VDC Network

Organization VDC network connects customer workloads in an organization serviced by the Edge gateway. The customers can have more than one organization VDC network. All organization networks are provisioned as routed networks in VMware Cloud Director service Initial Availability.
FIGURE 11: Create a new Organization VDC network

FIGURE 12: Provide Edge selection and gateway CIDR for the network

Configure DHCP Service and DNS forwarder
After the organization VDC network is created, the tenant can create a DHCP pool at the organization VDC network level. The edge gateway provides the DHCP service with Static IP Pools and DNS forwarder.

FIGURE 13: Provision DHCP pool for the workload VMs

The tenant admin can configure DNS forwarding at the edge gateway level. A listener IP is pre-provisioned, which is also an internal IP address from the organization VDC network. DNS forwarding is optional. A tenant can also use any public DNS server IPs in the network settings.
NAT Rules
NAT rules perform translation between a customer’s allocated external network and Organization network IPs. NAT is the mechanism that permits overlapping IP addresses on in different organization VDC. NAT rules also play an essential role in providing in-bound network connectivity. The customer can create SNAT and DNAT rules using the allocated external IPs and internal (Organization VDC) network IPs. While creating the NAT rule, available external network IPs are listed in the information button.

The following NAT rules allow all outbound traffic to the internet (SNAT) by all VMs in network 192.168.1.0/24 and allow web traffic to VM workload with IP address 192.168.20.1 (DNAT).

Note: when the DNS forwarder configuration is done on the edge gateway, a corresponding SNAT rule is created to match internal and external network IPs. This rule is service created, so the provider or customer cannot perform delete or create operation.

Edge Firewall Rules
The provider or tenant can manage the edge firewall configuration. The rules are applied to the uplink of the edge gateway, which provides north-south security. The edge firewall allows user to configure rules with the following parameters and options:
Building a Cloud Platform TCO – On the VMware Cloud Provider Platform

- Source, destination: Any or user-created IPset based group (supported input values are IPv4 address, address range, or CIDR).
- Service: Any or specific pre-created provider service. This list contains a service or group of services that providers or tenant admin can use to allow or drop traffic.
- Action: Allow/Deny. The default action is set as Allow.
- State: Enabled/Disabled.
- IP protocol: IPv4 or IPv6 protocol traffic is supported for traffic filtering. The default is set as IPv4.
- Logging: When the Edge rule has logging enabled, and workload traffic matches the Edge rule, a log message is registered.
- Direction: In and Out, In, out.

A sample firewall configuration as follows: The purpose of the following configuration is to allow Web and SSH traffic and block all other applications.

<table>
<thead>
<tr>
<th></th>
<th>Name</th>
<th>State</th>
<th>Applications</th>
<th>Source</th>
<th>Destination</th>
<th>Action</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Allow SSH In</td>
<td>Enabled</td>
<td>SSH</td>
<td>Any</td>
<td>InternalLexCorpServers</td>
<td>Allow</td>
</tr>
<tr>
<td>2</td>
<td>Allow Test Out</td>
<td>Enabled</td>
<td>-</td>
<td>InternalLexCorpServers</td>
<td>Any</td>
<td>Allow</td>
</tr>
<tr>
<td>3</td>
<td>Allow HTTPS In</td>
<td>Enabled</td>
<td>HTTPS</td>
<td>Any</td>
<td>InternalLexCorpServers</td>
<td>Allow</td>
</tr>
<tr>
<td>4</td>
<td>Deny All</td>
<td>Enabled</td>
<td>-</td>
<td>Any</td>
<td>Any</td>
<td>Allow</td>
</tr>
</tbody>
</table>

FIGURE 16: Example rules for DNS, HTTP, and ICMP Traffics from Workload VM-1

By following the above steps, customers and providers can quickly provide network connectivity using network services to the internet while securing applications using the Edge firewall. The example IP translations from workload VM of a customer to the public IP address is depicted in the diagram below.

FIGURE 18: IP Translations in VMware Cloud Director service leveraging NAT
Design Considerations for Multi-Tenancy in VMware Cloud Director service

- **VPN terminates at the T0 router** – Multiple Tier-1 gateways are required in a multi-tenant environment. Hence, the VPN solution provided by NSX cannot be consumed by the tenant. The workaround for this can be to use a non-VMware based VPN solution to provide connectivity.
- **Self-service distributed firewall for the tenant** – A tenant can consume the edge firewall through the tenant portal and creates rules to filter North-South traffic. However, Distributed firewall (DFW) rules configuration for East-West traffic is not supported. As a workaround provider can configure DFW rules in VMware Cloud on AWS.
- **Network sharing between multiple organization VDC** – Each customer organization VDC is isolated and independent from other customer organizations. The separation is provided by Edge gateway. Network sharing is not possible between the two organizations.
- **No vAPP Edge** – All tenant edge services are handled by the Tier-1 gateway. vAPP edge services are not supported per vAPP. The vAPP edge services are provided and supported by VMware NSX Edge services. This additional level of Edge services is not supported by NSX-T on VMware Cloud Director™ service.
- **AWS native services terminate at Tier-0** – Native AWS services such as Direct Connect, Elastic Network Interface (ENI) terminate at the Tier-0 level of the SDDC.

The following tables show Maximum supported configurations for SDDC on VMware cloud on AWS and VMware Cloud Director service:

VMC ON AWS SDDC LIMITS

<table>
<thead>
<tr>
<th>SDDC RESOURCE</th>
<th>PER SDDC LIMIT</th>
<th>TENANT AVERAGE</th>
</tr>
</thead>
<tbody>
<tr>
<td>Tier1 Gateway</td>
<td>16</td>
<td>1</td>
</tr>
<tr>
<td>Logical Segments</td>
<td>200</td>
<td>12</td>
</tr>
<tr>
<td>CGW Firewall Rules</td>
<td>950</td>
<td>60</td>
</tr>
<tr>
<td>CGW NAT Rules</td>
<td>500</td>
<td>30</td>
</tr>
<tr>
<td>Public IP Addresses</td>
<td>75</td>
<td>5</td>
</tr>
</tbody>
</table>

CLOUD DIRECTOR SERVICE

<table>
<thead>
<tr>
<th>CDS RESOURCE</th>
<th>PER</th>
<th>LIMIT</th>
</tr>
</thead>
<tbody>
<tr>
<td>VCD Org</td>
<td>SDDC</td>
<td>16</td>
</tr>
<tr>
<td>VMs</td>
<td>SDDC</td>
<td>2000</td>
</tr>
<tr>
<td>VCD Org</td>
<td>VCD Instance</td>
<td>80</td>
</tr>
<tr>
<td>VMs</td>
<td>VCD Instance</td>
<td>10000</td>
</tr>
<tr>
<td>Concurrent Users</td>
<td>VCD Instance</td>
<td>120</td>
</tr>
<tr>
<td>SDDCs</td>
<td>VCD Instance</td>
<td>5</td>
</tr>
</tbody>
</table>

Conclusion

To conclude, we reviewed the networking capabilities for providers and customers for multi-tenancy. We discussed how VMware Cloud Director service introduces consistent, isolated, secure, efficient, multi-tenancy to VMware Cloud on AWS through configuration steps. Cloud Director service also reduces time to provision new virtual data center resources and services. Cloud Director service allows providers to manage Firewall, NAT, Public IP services, and extend the networking and security capabilities to customers. The cloud provider service can genuinely enable the cloud providers to offer services to their smallest or largest size customers while leveraging VMware Cloud on AWS SDDC.